
Design and Experimentation of Complex Dynamical
Systems for Intelligent Navigation

Nathan Phan1 and Ani Hseih2

1Dept. of Chemical Engineering, The Ohio State University, SUNFEST Fellow
2Dept. of Mechanical Engineering and Applied Mathematics, The University of Pennsylvania

Abstract—Managing the consumption of resources exists re-
gardless of discipline. In the case of oceanic endeavors, this prin-
ciple manifests due to both energetic and physical constraints,
including fuel and motor capabilities. In order to advance our
understanding of robotic systems and interactions, we must
learn to overcome these obstacles, one method being more
intelligent planning through the various complex flows found in
practice. Evolving to meet this goal involves three discrete steps:
fabrication of these complex flows, implementation of algorithms
to build intelligence, and experimentation using the previously
developed miniature autonomous surface vehicles (mASV). This
paper details the first two steps, exploring the process, results,
and other applications of each. Numerical integration of complex
flows were developed within Python, improving our intuition
detailing their characteristics and properties of formation. Once
sufficient, miniature flows were conceived, translating theory
into experiment, finally scaling into the Multi-Robot Tank.
After modeling these complex flows, focus shifted to quantitative
and qualitative analysis of them, with hopes of translating the
trends into a data structure, whereupon algorithms for intelligent
navigation to be implemented. Implications of the findings further
our capabilities with the limited resources at hand, allowing more
efficient boats and testing.

I. INTRODUCTION

In practice, studying fluid flows is non-trivial, as they make
their systems non-ideal. Consideration of such complexities
drives the necessary cost of intellectual exploration to unfea-
sible lengths, both computationally and physically [1]. Even
the data provided by these methods may be null, as the
minute errors evolve into an uncertainty cascade [2]. One area
severely affected by this phenomenon of particular interest
to this paper is the study of robots in dynamical systems,
specifically oceans and other bodies of water. The successful
operation of autonomous surface vehicles (ASV) hinges on the
understanding of their environments, as they can make more
intelligent locomotive decisions, saving both time and energy.

Currently, researchers turn to computer simulations to model
flows. This requires descriptions, or models, of the flow that
can be evaluated by a computer, e.g. vector field (Fig. 3).
Numerical integration is one way to evaluate flow models.
While the production of simpler flows poses little issue, the
introduction of obstacles and imperfections in the container,
both of which are found in practice, brings with them com-
plexities that greatly increase the mathematics needed, as well
as computational requirements that may be out of reach. The
method of physical development and testing in this paper
challenges this approach, proposing an alternative that can

greatly reduce the time required to see quality and, more
importantly, realistic data to be examined.

To better understand energy efficient navigation for robot
teams we consider three steps: fabrication of these com-
plex flows, implementation of navigation algorithms, and
experimentation using miniature autonomous surface vehicles
(mASV). The objective of this summer is to fabricate flow
environments, and use the information derived from them
to advance intelligent navigation efforts. First, we explore
the capabilities of numerical integration, modeling a point
particle over a vector field. This helps build intuition for flows
before attempting any experimentation. Next, to allow for fast
development iteration, miniature flows are produced. Finally,
the miniature flows are scaled into the larger tank, where data
is collected about the flow. The three flows examined during
this project include the single gyre, the double gyre, and a flow
with an obstacle. Finally, potential algorithms are considered
for mASV navigation in flows.

The contributions of this research project are:
1) Reliable single and double gyre environments for further

testing of the mASV.
2) Quantitative data of the flow’s properties that could be

used later on.
3) Simulations and data-driven graphs for future presenta-

tions and reports.
4) Foundational knowledge for algorithms to be imple-

mented into intelligent path planning.

II. BACKGROUND

This summer, we explored a wide variety of fields to further
our objective of understanding flow environments to improve
robotic planning.

A. Numerical Integration

Numerical Integration includes computational methods to
approximate an integral through its integrands. One example
is the Taylor series expansion, and a common approximation
method is to use Euler’s Method. Euler’s Method is,

xn+1 = xn + f (xn)∆t (1)

which evaluates first order ordinary differential equations
(ODEs). It approximates the next point, xn+1, using its prede-
cessor, xn, allowing for an estimate to be made towards the
actual shape of the curve. While Euler’s method works well

in some cases, certain ODEs require higher order to capture
the true dynamics. Alternative numerical integration methods
can include these terms and result in approximations that are
closer to reality. One explored is the Refined Euler’s Method,
which evaluates the average of the two points given by Euler’s
method,

x̃n+1 = xn + f (xn)∆t, (2)

xn+1 = xn +
1
2
[f (xn)+ f (x̃n+1)]∆t (3)

where x̃ is the trial point and x is the actual step taken from
averaging the start and the trial.

B. Dynamical Systems

Time-dependent systems, otherwise known as dynamical
systems, offer insight into our changing world. This paper
plans to discuss them through the usage of ordinary differential
equations (ODEs), using them as a framework to detail the
simulation portion of the project.

For example, the simple harmonic pendulum provides a
reliable platform to establish a strong intuition for dynamics.
This toy problem can be extended to include additional forces
such as damping [4].

Fig. 1. Simulation of a Simple Pendulum Using Euler’s Method

Using Euler’s method (1) we simulate a simple pendulum.
The dynamics of the simple pendulum are,

d2θ

dt2 =−g
L

sin(θ) (4)

where g is gravity, L is length of the rod, θ is the state
of the pendulum. In this project, we focus on simulating
various gyres to improve intuition for these complex dynamic
environments.

C. Data Structure and Algorithms

Dijkstra is a foundational graph search algorithm used in
intelligent robotic navigation and planning [7]. It is a greedy
method that traverses a weighted graph, picking the edge with
the smallest value at that specific point. This approach suffers

as the graphs become more complex, since it explores every
possible connection at every node. This greatly increases the
computational time and power required as the number of nodes
and edges grow.

There are extensions of Dijkstra to improve graph search.
For example, A* adds a heuristic to Dijkstra, which accounts
for the location of the goal, picking nodes that carry the path
towards it. In this work, we implement Dijkstra as a first step
to understand ways to perform robot path planning in flows.

III. METHODOLOGY

The objective of this project is to generate environments
where robots require intelligent navigation. Complex environ-
ments, such as oceans and rivers, may cause losses in effi-
ciency if traversed improperly, limiting the robot’s capability
to complete its intended objective.

A. Simulation of Dynamical Systems

Circular oceanic patterns, known as gyres are the focus
of this project. Gyres are observed throughout the world,
and understanding their properties and, more specifically, the
interactions they have with objects such as ships or floaters,
may provide key insights needed to improve navigational
needs.

First, we simulated flows to better understand the theoretical
underpinnings of the environments we were trying to generate.
The principles learned from integrating the simple pendulum
were then translated to both the singe gyre and double gyre.
These time independent flows are seen in Figures 2 and 3
below. The ODEs for the double gyre are,

ẋ =−∂ψ

∂y
, (5)

ẏ =
∂ψ

∂x
(6)

where ψ is

ψ(x,y) = sin(πx)sin(πy). (7)

To properly display the simulation, an initial plot of the sin-
gle gyre vector graph was conceived, who’s vectors produced
from the partial derivation of the double gyre equation, shifting
its frame such that it only shows a singular gyre. The vectors
were composed using the components provided by the partial
differentiation of the time independent double gyre equation
by x and y.

Fig. 2. Vector field of a time independent single gyre flow

Fig. 3. Vector field of a time independent double gyre flow

Adding Euler’s method lead to the production of a particle
moving about a single gyre flow, however this particular model
faced drawbacks.

Euler’s method, as stated before, suffers from issues with
accuracy, revealing themselves though the particle’s lack of
stability. The theory suggests that the center of a gyre is
its calmest part [5], but within the simulation, the particle
readily escaped. A simple fix would be adjusting the time step.
By shortening ∆t in Equation (??), Euler’s method suggests
that its accuracy increases. While true up to a certain point,
the method falls short yet again in one major respect. First,
decreasing the time step increases the computational expenses
of the program. While minimal increase of computational time
was seen, with more complex systems, this can rapidly spiral
[6].

To combat this, we use a refined Euler’s method. As
seen in Equation (2) , the method relies on the average of
the two steps, increasing the accuracy while maintaining the
same initial step size. This manifested in an expected greater
stability within the core of the gyre, as the particle was more
inclined to remain in its position.

With a practical understanding of simulating flows the next
step is to attempt to experimentally generate small flow like
environments.

B. Experimental Testing

Mini flows are generated in order to obtain physical intuition
for flows before applying insights to a larger tank. This
requires understanding where to place propellers, as well as
what velocity of flow results in strong visibility.

Due to the volume of ScalAR’s Multi-Robot Tank, initial
prototyping of the desired flows would be impractical. The
time required to fill or drain the tank would force the project
to a halt, as testing water voltage ratios would be imperative to
further testing. Additionally, double gyre and obstacle driven
flows were novel to the group, with none having ever been
generated before. Lacking intuition on how to build these
flows, what water to voltage ratios would be most optimal, and
time constrictions, it was imperative that flow testing started
in a smaller, more manageable environment.

The intuition gained from these flows is then applied to the
Multi-Robot tank. We place drifters in the flow, and track their
trajectories using an OptiTrack motion capture system.

The ScalAR lab is interested in having robots operate in flow
like environments. This requires modeling the environment,
generating these environments experimentally, and intelligent
navigation methods for robots in the flow. Knowledge of
this environment, qualitatively observed from the simulated
and physical flows, provides insight on potential intelligent
navigation strategies.

C. Navigation in flows

Given a single gyre, we built a graph model exploiting the
gyre shape. The graph is a 6-node complete graph, connected
with weighted edges. The weights for these edges followed
two presumptions derived from the data collected from the
single gyre flow.

These assumptions are:
1) Traveling with the direction of the gyre would be vastly

more efficient than vice versa
2) Traveling about the flow to reach the desired location

would be vastly superior as compared to through the
gyre, as no drifter was seen to travel across the gyre.

Fig. 4. Graph representation of a CW single gyre, highlighting the most
efficient path

In our specific iteration, Dijkstra looks for the path with the
lowest value, representing the least energetically taxing path.
These graphs were created using dictionaries, with keys being
the node names and values being the edges. Each edge was

directional, allowing us to assign differing values depending on
the direction of travel. As previously mentioned, assumptions
are made that traveling about the flow will be more efficient
than against it, and that traveling through the center of the gyre
would be more difficult than about it. These two assumptions
lead the edges that follow the direction of the gyre to be
weighted significantly less than others. This can be seen in
Figure 4

IV. EXPERIMENTAL SETUP

Flows are generated in two experimental environments: the
miniature flows and the Multi-Robot tank.

Below, the miniature single gyre flow is pictured (Fig.
5). This flow features two vibration motors, directing the
flow of water in the direction stipulated in the figure. The
particle’s movement provided a basis in which we were able
to determine that the flow had been created, despite its non-
ideal shape.

Fig. 5. Miniature Single Gyre flow

The double gyre configuration saw more iterations, due
to competing views for its construction. Three (Fig. 6) and
four (Fig. 7) propeller designs of the flow were made and
tested, both configured in a way such that the tank geometry
itself was leveraged in order to produce a satisfactory flow.
Upon final evaluation, the four propeller was chosen for future
experimentation.

Fig. 6. Three propeller configuration of the double gyre flow

Fig. 7. Four propeller configuration of the double gyre flow

While a miniature obstacle driven flow was produced, the
scale of the obstacles to the flow size proved to be a major
issue. Due to experimental setup issues, these results are
excluded from this report.

With each miniature flow proving successful, they were
scaled to the dimensions of the MultiRobot tank. This process
was seamless, as the miniature flow provided strong intuition
regarding how to arrange propellers such that the geometry of
the tank was leveraged. The scaled products are as followed:

Fig. 8. Multi-Robot tank single gyre

Fig. 9. Multi-Robot tank double gyre

Fig. 10. Multi-Robot tank obstacle driven flow

Figures 8, 9, and 10 each highlight the location of the
propellers, as well as the direction in which the water travels
about them. In the cases of the single and double gyres, the
intended flow pattern is depicted as well.

Fig. 11. Passive Drifter

Within each of the Multi-Robot tank flows, drifters (Fig.
11) were used in conjunction with the lab’s Optitrack system,
collecting data which was then plotted using Python. The data
observed from the flows built upon previous intuition that
would later be used in the graph modeling process. The visual
data collected is shown in Figures 13, 13, and 14.

Fig. 12. Drifter Data for Single Gyre flow

Fig. 13. Drifter Data for Double Gyre flow

Fig. 14. Drifter Data for Obstacle Driven flow

V. RESULTS AND DISCUSSION

Initial testing of the both the single and double gyres, and
obstacle driven flow, all proved successful, with clear flow

paths being produced. Throughout the process, initial intuition
regarding these structures were both broken and reinforced.

A. Navigation in flows

The path planning implementation in the single gyre was
successful, as it it gave a path that aligns with both the vector
field (Fig. 2) and single gyre direction. No matter the start
or end node, the algorithm gave the least energetically taxing
path, even if the total distance was longer.

There are two issues with this graph model of the single
gyre flow, both stemming from its simplicity.

As seen in the overlaid image (Fig. 15), the lack of nodes
generalizes the flow to the point of potential inaccuracy. It
neglects the nuances found within the flow, as the edges found
within the graph may not align with the vectors of the flow
as seen in the vector field (Fig. 2). These discrepancies would
likely cause losses in efficiency.

Another issue would be the weights assigned to the edges.
Though practical, clearly displaying the most natural path
about the flow, they lack specificity. Intuition states that the
flow speed around a propeller would be greater than the
regions without it, but the graph fails to account for that
phenom. Like with the lack of nodes, lack of edge weight
accuracy may cause for unwanted inaccuracies in the ideal
path about a flow.

A solution to both issues might be a re imagining of the
graph itself. Rather than using a 6-node directional complete
graph, a mesh may be used to represent the entirely of the
tank, rather than the flow itself. The mesh would allow for
more nodes and with it more edges to accurately depict the
nuances found within a single gyre flow.

Fig. 15. Single Gyre Graph overlaid onto Multi-Robot Tank gyre

B. Overall construction

Suspicions around the construction of these flows were
prevalent, but what remained consistent was the leveraging
of the container’s geometry. The walls in particular, posed as
both a benefit and a hindrance, depending on the container
used. In the miniature flows, the corners of the container
seem to have produced unwanted vertices within the flow,
causing the particles to become entrapped, temporarily halting
their movement. This was later rectified once scaled to the

Multi-Robot tank, which possesses a more ideal shape. This
ideal shape allowed for more flexible configurations of the
propellers. It was also determined that the clarity of the flow
was a function of the flow speed, which in our case was
determined by the voltage supplied to the propeller, and the
amount of water in the tank. With faster speeds, indicated
by higher voltage, the surface of the water begins to distort,
muddying the flow. The opposite was seen with high water
levels. The assumption made was that an increase of water
essentially increases the amount of mass needed to be moved
by the propellers. The optimal combination was learned to be
a low flow speed combined with a low water level, which can
be seen in Figure 16.

Fig. 16. Comparison of varying flow speeds (determined by voltage) and
water volumes (determining the mass needed to be moved)

C. Three vs. Four propeller configurations for the double gyre

The three and four propeller configuration comparison
posed as an interesting question. At its core, it seems to
investigate the importance of a distinct median within the
double gyre. The three propeller double gyre argues that the
median is trivial, as a successful generation would indicate that
one might not need to be fostered. The four supports the idea
that the same median is in fact non-trivial to the generation
of the double gyre, and that two the two sides must have a
distinct region separating them. It was found that this median
zone was non-trivial, and that separation of the two gyres has
an impact on the clarity of the flow itself, inviting further
testing of this separation.

D. Variations in flow velocities through position

Supported by the numerical integration of the velocity
vector of a single gyre (Fig. 2), intuition states that the
center of the gyre experiences a slower flow than the outer
edges. Experimentally, this notion was supported. Below, the
individual drifter paths (Fig. 17) and velocities (Fig. 18) are
shown.

Fig. 17. Single Gyre drifter positions

Fig. 18. Single Gyre drifter velocities

Drifter four is of interest, as it clearly displays the assump-
tion made through the vector field. As the drifter approaches
the center of the gyre, both the x and y velocities deteriorate.
Compare that with the graphs of drifter five, which sees
minimal fluctuation in its position vs time graph, presumably
due to its relatively consistent path.

VI. CONCLUSION

The project concluded in an exciting area, one that allows
for a variety of pivots, each proposing great value to the group.
Of particular interest is continuing the graph implementation
of the project. The graph implementation currently lacks
accuracy, as there are simply not enough edges capable of
being modified, leading to an overly simplified rendition of
what it should be. A stronger graph would feature more nodes
and with it more edges, so that more minute movements and
shifts in velocity are accounted for. Additionally, intuition only
leads to so much accuracy. While it is true that traveling along
the flow is most efficient, this generalization may lead to poor
path planning and efficiency.

VII. ACKNOWLEDGEMENTS

I would like to give immense thanks to my partner Arriella
Mafuta, mentors Victoria Edwards, Thales C. Silva, principle
investigator, Dr. Ani Hsieh, and everyone else in the ScalAR
lab group for making this summer so memorable. Truly,
I would be unable to accomplish this without you all. I
would also like to thank the National Science Foundation for
supporting SUNFEST through NSF REU grant no. 1950720.

REFERENCES

[1] D. Kularatne, S. Bhattacharya and M. A. Hsieh, ”Optimal Path Planning
in Time-Varying Flows Using Adaptive Discretization,” in IEEE Robotics
and Automation Letters, vol. 3, no. 1, pp. 458-465, Jan. 2018, doi:
10.1109/LRA.2017.2761939.

[2] K. Szwaykowska and F. Zhang, “Controlled lagrangian particle track-
ing: Error growth under Feedback Control,” IEEE Transactions on
Control Systems Technology, vol. 26, no. 3, pp. 874–889, 2018.
doi:10.1109/tcst.2017.2695161

[3] R. A. Nelson and M. G. Olsson, “The pendulum—rich physics from a
simple system,” American Journal of Physics, vol. 54, no. 2, pp. 112–121,
1986. doi:10.1119/1.14703

[4] H. E. Fiedler, “Coherent structures in turbulent flows,” Progress in
Aerospace Sciences, vol. 25, no. 3, pp. 231–269, 1988. doi:10.1016/0376-
0421(88)90001-2

[5] S. Fadugba, B. Ogunrinde, and T. Okunlola, “Euler’s method for solving
initial value problems in ordinary differential equations.,” Afe Babalola
University Repository, http://eprints.abuad.edu.ng/244/ (accessed Aug. 2,
2023).

[6] Huijuan Wang, Yuan Yu, and Quanbo Yuan, “Application of dijk-
stra algorithm in Robot Path-Planning,” 2011 Second International
Conference on Mechanic Automation and Control Engineering, 2011.
doi:10.1109/mace.2011.5987118

