

Developing an Optical System with a Confocal Chromatic Sensor for Microscopic Robot Characterization Morgan Jones¹, Kyle Skelil², Will Reinhardt³, Marc Miskin^{2,3}

S Center for Nanotechnology

Abstract

Robots on the microscopic scale are smaller than what the naked eye can see, leaving certain aspects of the microbots, like their topography, difficult to characterize. To measure this, we can use a confocal chromatic sensor, but the sensor only has a short focal length and needs to be integrated with a microscope to characterize the microbots. Additional we have a Galvo Steering system, and in our experiment, we explored the possibility of using the system to more precisely control the confocal Chromatic sensor. We determined that we needed to collimate the beam for microscope utilization and an optical system with achromat lenses was studied and tested. From experiments with these system, we were able to collimate the beam with the sensor into a point. However, we were still out of range with the device sensing system despite refocusing the beam, so there more work to be done on the system, with a focus on integrating the sensor into a microscope.

Background

Confocal Chromatic Sensor

Measuring Principle

Light is split into different spectra by lenses and focused on an object through a multi-lens optical system.

Then, light is broken down by controlled chromatic aberration into monochromatic wavelengths dependent on the displacement

Lens and Beam Collimation

Achromatic lenses (Archomats)

Lens with two optical components cemented together

A positive low-index component, the crown and a negative high-index component, the flint

Collimation occurs when all the rays in the beam are parallel.

Collimated light sources can be used in the microscope

Advantage of the lens: ability to reduce chromatic aberration

¹Department Mechanical Engineering, Howard University ²Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania ³Department of Electrical and Systems Engineering, University of Pennsylvania

Optical Setup

LED Light Optical System

Plano Convex Lens

ight Collimate

Confocal Chromatic Sensor Optical System

Mirror

Galvo Steering System

Future Direction

- Utilization with microscope
- In range of sensor
- Robot characterization

Acknowledgments

- Kyle Skelil and Will Reinhardt
- Dr. Marc Miskin; Miskin Group
- This work was carried out in part at the Singh Center for nanotechnology, part of the SUNFEST program supported by the National Science Foundation with NSF REU grant no. 1950720

