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Abstract—Restoration of sensory feedback in Brain-Machine 
Interfaces (BMI) currently relies on user-in-the-loop calibrations 
or closed-loop approaches to replicate known neural responses 
corresponding to the target sensory perception. However, both 
approaches are not practically robust when considering the 
variability among users and neural interfaces. We propose an 
alternative, robust, and generalizable stimulus parameter search 
algorithm to 1) reduce the number of trials and total tuning time 
required to find discriminable sensory percepts, and 2) diversify 
the exploration of the stimulation parameter space.

Index Terms—Somatosensory encoding, Brain-Machine 
Interfaces, Discriminable neural percepts

I. INTRODUCTION

Advances in brain-machine interfaces (BMI) show promise 
towards improving quality-of-life for amputees and patients 
with paralysis. However, BMI development has primarily 
focused on motor control, decoding motor intent from brain 
activity in the motor cortex to control a prosthetic limb or the 
peripheral nervous system. In the current state of BMIs, 
development has largely neglected the importance of tactile 
feedback [1] Thus, development of bi-directional BMIs that 
interface with both motor and sensory cortices are under 
investigation [2]. The current state of afferent neural interfaces 
providing somatosensation largely rely on user-in-the-loop 
methods. In other words, the user's subjective perception is the 
sole measure used to tune neural stimulation parameters. This 
tedious and time-consuming process is hampered by human 
errors and typically neglects the majority of the stimulus 
parameter space [3][4]. Consequently, evoked percepts can 
have little resemblance to natural sensory percepts [3].

Closed-loop approaches to tune stimulus parameters based 
on neural responses, rather than perceptual responses, have 
previously been explored. These algorithms assume that a 
spatiotemporal neural response corresponding to a certain 
percept is known [5]–[10]. Finding parameters to evoke these 
ground-truth neural responses sets up a straightforward 
controls problem. However, considering the variability 
between individuals and neural interfaces, these “target” 
neural activity patterns cannot be inferred from or generalized 
between the patient population [9], [11].

We propose an alternative, robust, and generalizable 
stimulus parameter search algorithm to 1) reduce the number 

of 

trials 
and 
total 

tuning time required to find discriminable sensory percepts, 
and 2) diversify the exploration of the stimulation parameter 
space. Our hypothesis makes a key assumption that 
discriminable neural responses are related to unique sensory 
percepts. This assumption is supported by numerous studies 
linking neural population activity to perception [12].

Fig 1. Workflow of proposed stimulation parameter search 
algorithm. Grey: past closed-loop approaches to adjusting 
stimulation parameters with a cost function to minimize the 
error between the recorded and “desired” response (to target 
sensation). Beige: proposed closed-loop approach 
simultaneously searches multiple stimulation patterns and 
implements a cost function to maximize the distance between 
the downstream responses. 

II. BACKGROUND

Previous work surrounding closed-loop approaches to 
optimizing the encoding of specific neural percepts relies on a 
known neural response that corresponds with the target neural 
percept [5]–[10]. This creates a simple objective of reducing 
the spatiotemporal difference between the known activity and 
the evoked activity but considering the variability of each 
neural interface and individual’s brains, this approach does not 
offer a robust and scalable solution to encoding somatosensory 
feedback [11]. 
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Considering these limitations, we propose a cost function to 
find the maximum number of stimulus encodings that have 
maximum dissimilarity from each other. This cost function 
now optimizes for discriminability of neural percepts with 
disregard for biomimetic experiences, based on the key 
assumption that dissimilar neural percepts downstream of the 
stimulation site results in discriminable neural percepts [13], 
[14]. Given the current understanding of sensory encoding, 
rather than chasing biomimetic percepts, evoking arbitrary 
neural percepts, and having users learn a new set of sensory 
mapping is more practical given the variability of every BMI. 

Kriegeskorte’s Representational Dissimilarity Matrix 
provides a framework in which neural responses can be 
evaluated as discriminable based on the correlational distance 
in the neural representational space – which becomes the basis 
of how the dissimilarity of neural activity will be evaluated in 
the proposed cost function [15]. After reducing the 
dimensionality of the spatiotemporal neural response, 
unsupervised clustering techniques will cluster the neural 
responses into groups related to discriminability; if two 
clusters are significantly distant in the response space, we 
assume that the stimulus parameters from each neural percept 
will evoke discriminable responses. 

However, given the vastness of the stimulus parameter 
space, a brute force search and pairwise computation of 
dissimilarity would take significant time and likely, compute 
power considering that the algorithm is intended to be used 
online, in a closed-loop BMI. Furthermore, the noise in 
electrophysiological recordings will likely contain significant 
noise, requiring multiple passes and the averaging of neural 
responses to create a reliable representation in the neural 
response space. Given these challenges, the algorithm must 
efficiently search across a set of stimulus parameters whilst 
minimizing the number of passes for each stimulus set, calling 
for methods similar to active learning methods for 
unsupervised clustering in large datasets with a modified 
prioritization function [16].

III.METHODS

Initial testing of the optimization algorithm was performed 
with data collected from acute experiments in anesthetized 
rats. Two sets of 32-electrode arrays (in 4 by 8 orientation) 
were implanted in vibrissal S1 (vS1) and vibrissal M1 (vM1). 
Stimulation was delivered in vS1 electrodes and the response 
in vM1 was recorded, to perform the representational 
similarity analysis between the responses in vM1 to different 
stimulation patterns in vS1.

3.1 Stimulation: 
To evoke sensation, mircostimulation with a pulse width of 

200 s and amplitude of 50 A was delivered in each of the 
32 vS1 electrodes individually.

3.2 Whisker to vS1 Validation Experiment:
Initial stimulations were delivered in vS1 in the electrode 

location domain. To validate clusters from the search 
algorithm, we assumed that clusters of vS1 electrodes that 
respond to different whisker deflections result in discriminable 
percepts. 

3.3 Preprocessing and Feature Extraction
The response in vM1 15 ms before and 50 ms after the 

stimulation was sliced. The stimulus artifact was removed 
prior to applying a bandpass filter between 300 and 5000 Hz 
to isolate multi-unit activity. Signal-to-noise (SNR) was 
calculated between with noise as the pre-stimulus window.

Fig 2. Stereotaxic coordinates of array implantation sites 
relative to approximate sensory and motor whisker 
representations.

IV.  ALGORITHM

The workflow of the algorithm is listed in Figure 3. An 
online implementation would stimulate a set of patterns which 
will be called a schedule. The response to each stimulation 
pattern is then processed, resulting in a 32-dimensional vector 
of SNR – one for each recording electrode. After each set of 
stimulation, the algorithm clusters the responses naïve to 
which stimulation pattern each response came from. The 
current implementation uses DBSCAN or density-based 
spatial clustering of application with noise due to its 
robustness with noise as well as the lack of a requirement of k, 
or the number of clusters. 

Once the algorithm clusters the responses, the clusters are 
evaluated using a silhouette score which calculates the ratio 
between intra-cluster and inter-cluster distances. The denser 
and far away from other clusters, the higher the score. Based 
on a threshold, if a cluster exceeds the silhouette score 
requirement, the cluster contents are evaluated.

To evaluate cluster content, the ratio of responses resulting 
in that cluster is compared. For example, if a cluster contains 3 
responses from stimulation pattern A and 6 responses from 
stimulation pattern B, and both stimulation patterns have been 
explored 6 times, then stimulation pattern B is the 
characteristic stimulation pattern for that cluster because 100% 
of stimulation pattern B resides in that cluster, compared to 
just 50%. 

Furthermore, stimulation pattern A, in this case, is “pruned” 
from the search because a majority (greater than or equal to 
50%) of stimulation pattern A resided in a cluster that was 
deemed good but was uncharacteristic for that cluster.
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The final output of the algorithm is a set of characteristic 
stimulation patterns that result in disparate clusters in M1. The 
idea here is to reduce the number of trials necessary for each 
stimulation pattern by evaluating the responses in real-time. 

Fig 3. Workflow of algorithm in an online implementation.

V. RESULTS

The online algorithm has not been deployed yet but has 
been tested in an offline simulation. The whisker to vS1 
experimental data that corresponds to the vS1-vM1 dataset 
that was used in the simulated algorithm experiment did not 
exist, and thus it is hard to evaluate results.

Regardless, the clustering algorithm was able to find a 
single cluster even with a reduced number of trials per 
stimulation pattern from 25 in the brute force experiment to 
between 3 and 7. Based on “ground truth” clustering of this 
vS1-vM1 dataset, a single cluster seems to be a reasonable 
finding, although not a desired outcome.

VI. DISCUSSION

Further testing on a validation dataset is necessary in order 
to fully understand the strengths and weaknesses of the 
proposed algorithm. Ideally, the number of whisker barrels 
that reside in the vS1 implants (based on the whisker-vS1 
results) should be the minimum number of clusters that the 
vS1-vM1 experiment should be able to find. 

In terms of further improvements to the algorithm, trying 
different methods of determining an eps value for DBSCAN 
may be necessary for clustering raw SNR values. 
Alternatively, normalizing the SNR values to fit a reasonable 
eps value could serve better than current methods. 

Another implementation of this search algorithm could be 
to use SNR working average across trials instead of raw or 
normalized SNR values. The average SNRs can then be 
converted into a representational dissimilarity matrix and 
further clustered using DBSCAN with pairwise distances. This 
approach may serve as an alternative to normalizing the SNR, 
but does neglect the noise or spread of SNR across trials.

Further implementation of the algorithm should also 
consider specific properties of stimulus parameters. In the 

initial testing, the electrode location was considered discrete 
and independent from each other, but they are oriented in a 
grid where relative location could be fed into the algorithm to 
further reduce search time. For stimulation parameters such as 
amplitude, a threshold for response could simultaneously be 
calculated. Other parameters dimensions to test are pulse 
duration, number of pulses, frequency, stimulus shape (sine, 
box, etc.), etc.

Regardless, we are optimistic regarding the algorithm and 
hope to test with a full dataset as soon as it is ready. 
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