Optimizing Material Properties of Tape Spring Based Steerable Needles to Minimize Required Insertion Force

Megan Santamore

Electrical Engineering, Princeton University

SUNFEST REU Program PI: Prof. Mark Yim

Optimizing Material Properties of Tape Spring Based Steerable

Needles to Minimize Required Insertion Force

Megan Santamore, Princeton University, *SUNFEST* Fellow Mark Yim, University of Pennsylvania, Ph.D. Department of Mechanical Engineering and Applied Mechanics Omar Abdoun, University of Pennsylvania, Department of Bioengineering SUNFEST The Summer Undergraduate Fellowship in Sensor Technologies

Conventional Needles

Steerable Needles

Tape Spring-based Steerable Needles

Primary mode of error with Tape Spring-based steerable needles = **buckling**

How can needle buckling be prevented?

- lowering insertion force!

How can the insertion force be lowered?

- Stop by my poster during the symposium to find out!