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Abstract— This paper outlines a design for a spring that
can produce large changes in stiffness in a short period of
time, while also maintaining other spring parameters such as
relaxed length or diameter. To achieve this, we propose an
electromechanically tunable stiffness spring. This mechanism
consists of a thin PET sheet bent into a ring with many layers
that we can add or remove continuously from the center to
change the effective thickness of the ring without affecting
its outside diameter. We built a model, and validation using
a multitude of practical stiffness tests while changing spring
parameters. Finally we demonstrate the capability of our spring
in a tunable stiffness manipulator. By using our deformation
model, we build a variable stiffness spring segment with 4DOF
for millimeter accurate positioning, with rigidity control.

I. INTRODUCTION

Soft robotics is one of the fastest growing research topics
in the robotics field [1]. It has major implications in medical
robotics, and has provided impactful advances in biological
mimicking, dexterous manipulation, and unique locomotion
and actuation techniques [2]. With an intrinsic ability to
be safe for human-robot interaction, soft robotics is a clear
contender for tasks involving human collaboration such as
space exploration, or surgery ([3], [4], [5]).

A common device used in constructing these soft robotic
structures is a spring. However, classical springs have pa-
rameters such as relaxed length, diameter, and stiffness
that are fixed and are immutable without causing damage
to the structure. Researchers have designed novel springs
for their compliant structures that can dynamically change
these parameters in order to improve performance and open
new avenues of actuation in their device [6]. Typically, the
parameter that is altered the most is stiffness. There are
many ways to achieve these variable stiffness structures, but
we have simplified most of these solutions into two main
categories.

Smart materials can be precisely controlled to change
their material properties by applying some form of external
excitement into the system. One such method uses an electro-
rheological (ER) fluid, which can vary in viscosity by apply-
ing an electric field [7]. There are also electrically actuated
polymers that can be excited with an electrical field to stiffen
due to compressive electrostatic forces inside the material
[8]. Other polymers called SMPs (shape memory polymers)
can be triggered by a process in which specific chemicals
diffuse into the structure causing a reversal in both shape
and stiffness after deformation [9]. Similarly, SMAs (shape
memory alloys) can change their stiffness when affected by
changes in temperature and have been used extensively in
many soft robotic tasks such as manipulation ([10], [11]).

Fig. 1. Proposed Tunable Stiffness Spring Design. Consisting of a single
motor, and a PET ring

On top of material science solutions to variable stiffness,
there are numerous mechanical designs that leverage a vari-
ety of solutions such as friction, pressure, and topology to
affect a change in stiffness. The McKibben muscle is one
of the most famous pneumatic or hydraulic soft actuator.
By increasing the internal pressure of a flexible tube, the
mechanism can increase in diameter, and shorten in length
which will alter the overall stiffness of the muscle. Another
pneumatic solution involves a physics principal called jam-
ming where a decrease in pressure of a tube that is filled with
particles or thin sheets jams the internal components together
and stiffens the entire structure through friction. There are
also numerous motor driven solutions such as jack springs
[12], leaf springs [13], SEAs (series elastic actuator), VSAs
(variable stiffness actuator) [14], and more. Auxetics, which
are materials with a negative Poisson’s ratio, have been used
in a concentric tube structure to achieve a variable stiffness
system [15]. Origami has also been used in conjunction with
other metamaterials to produce impressive tunable stiffness
structures [16].

Most of the mechanical solutions above vary spring length
to control spring stiffness. While many of the smart materi-
als, such as SMAs take a large time to change in stiffness
or may not produce a large enough change in stiffness to be
impactful in a robot control scenario under high loads and
speeds. What is missing in this research is a solution for a
large, fast change in stiffness without affecting other spring
parameters such as length.

This work outlines a design for a spring that can produce



large changes in stiffness in a short period of time, while also
maintaining other spring parameters such as relaxed length or
diameter. To achieve this, we propose an electromechanically
tunable stiffness spring. This mechanism would consist of a
thin PET sheet bent into a ring with many layers that we can
add or remove continuously from the center to change the
effective thickness of the ring without affecting it’s outside
diameter. By compressing this ring we form a spring that
increases in stiffness with an increase in layers from the PET
sheet. We propose a model, and validation using a multitude
of practical stiffness tests while changing spring parameters
such as ring diameter, material thickness and width, as well
as the amount of layers in the spring.

Finally we demonstrate the capability of our spring in
a tunable stiffness manipulator. By using our deformation
model, we can build a variable stiffness spring segment and
corresponding lyapunov stable controller as an application.
This compliant structure consists of four of our variable stiff-
ness springs, and a singular motor for global compression.
This design allows for a precise 3D positioning structure that
is modular and could be stacked to produce non-constant
curvature shapes, as well as force control which wouldn’t be
possible without a spring with these properties.

II. THEORETICAL MODEL

Our main goal in this section is to describe how we
modeled the deformation of the spooled material inside our
spring.

A. Assumptions

To simplify this problem, we assume that this spool is
a set of nested concentric elastic rings where the inside
diameter of one ring touches the outside diameter of the
ring inside of it. We also make the assumption that each
ring is compressed between two plates that are always flat.
This allows us to model each ring separately which will
greatly simplify our mathematical model. Extending on the
flat plate compression assumption, we will assume that our
deformations are vertically symmetric.

In this paper we also look at states where the material
inside the spool doesn’t make a full circle, leaving us with a
half-ring. For this, we assume the amount of material in an
unfinished ring maps linearly to the amount of force a full
ring of the same diameter would produce.

B. Nomenclature

Using the model proposed in [17] to model the com-
pression of concentric elastic rings we can introduce the
following parameters listed in Table I & Table II.

TABLE I
RING PARAMETERS

D
Diameter of the ring measured

from the centerline of the material

H Thickness of the ring material
W Width of the ring material
L Circumference of the ring
S Arc length of the ring
E Elastic modulus of the ring

I (= WH3

12
) Cross-sectional moment of inertia of the ring

B Contact length between the ring and the plate.
F Downward load on the ring

The most notable parameter from this table is S. The arc
length of the ring. Our model utilizes a non-dimensional
differential equations with a derivative of S. To supplement
this, Table II lists the functions of S that are important to
our problem.

TABLE II
FUNCTIONS OF S

θ(S)
Tangent angle of the ring

measured from the horizontal

X(S) Horizontal coordinate of the ring
Y (S) Vertical coordinate of the ring
M(S) Internal bending moment
P (S) Internal horizontal force
Q(S) Internal vertical force

C. Single Ring Compression Model

Due to the geometry of how rings compress, there are two
states that need to be modeled separately. During the initial
portion of compression, the plate only contacts the ring at the
very top and bottom of the circle. This behaviour is shown in
the first model in Figure 4. There is a force threshold where
the ring contacts the top and bottom plates at more than just a
single point. At this compression point, we swap to a second
model that takes this into account which is shown in Figure
5. The variable that represents the length contact between
the ring and the plate is B. Because of the assumption
that our ring deformations are vertically symmetric, we will
only model the right side of the ring starting when it first
stops contact with the bottom plate. This means that as we
compress, the origin of our model will change depending on
how much of the ring is contacting the base plate. This can
be seen in the illustration in Figure 2 & Figure 3 where the
origin moves to the liftoff point as the ring is compressed.
The non-dimensional variables that are constructed for our
model are shown in Equation 1.

x =
X

L
, y =

Y

L
, s =

S

L
, b =

B

L
,

f =
FL2

EI
, p =

PL2

EI
, q =

QL2

EI
, m =

ML

EI
(1)

The non-dimensional governing equations that utilize these
variables to model our ring system are listed in Equation 2



Fig. 2. Ring parameter diagram for point load forces

Fig. 3. Ring parameter diagram for plate load forces

and are pulled from references [17], [18], & [19].

∂x

∂s
= cos θ,

∂y

∂s
= sin θ,

∂θ

∂s
= m+ 2π,

∂m

∂s
=

f

2
cos θ − p sin θ (2)

Using these equations, we can solve for the ring compression
from a given f for both states of compression- the point load
model, and the plate load model. To solve for these, we
used MATLAB ode45 and fsolve to construct, and solve this
second-order equation similar to using a shooting method. To
do this, a set of initial and final conditions must be given for
your variables in order to achieve the desired state. We also
must specify what to integrate over, which in this case is s.

1) Solving Point Load Compressions: Since we have
nondimensionalized our variables, this model has an arc
length of 1 from the bottom to the top of the right half of the
circle. From Figure 2 we can see that our integration origin
point is at the very bottom of the circle for the point load. So,
our range for s is just 0-1. With that in mind, and a user-
chosen compression force f, we can feed in the following

conditions to solve our equation:

Initial conditions: x = 0, y = 0, θ = 0, m = ?, p = ?

Final conditions: x = 0, θ = π

The values with question marks are the variables that we use
fsolve to optimize so our ode45 solution fits the desired final
parameters after integration. Now that we have a working
model for a specific force, we can vary f and generate a
force-displacement plot for this model for any force value
before plate load compression occurs. This can be seen in
Figure 4

2) Solving Plate Load Compressions: The plate load
model is very similar to the point load model. We can
reuse the same equations, however initial conditions, and the
parameters we vary to fit our final parameters change. The
largest change is the amount we integrate over in s. Since we
start our origin at the liftoff point of the ring, and a portion of
our ring is flat against the plate we can no longer assume an s
from 0-1. We must subtract the amount of material that is flat
against the plates on the top and the bottom to get a correct
integration length. So the maximum value of s should be
1−2b
2 where b represents the non-dimensional contact length

between the ring and the plate. So our new s range is 0 to
1−2b
2 . It should be noted that one of the new parameters that

we optimize for in this model compared to the point model
is b. So, the integration length isn’t known until the equation
is fully solved. Below is the list of conditions for this plate
model based on an initial input for f:

Initial conditions: x = 0, y = 0, θ = 0, m = −2π,

p = ?, b = ? (3)
Final conditions: x = 0, θ = π

We can now generate force values for the compression force
for this model, and combine it with the plate model to
produce a continuous force-deformation plot. These results
can be seen in Figure 5

D. Nested Ring Compression Model

Now that we have a continuous compression model for
a singular ring, we can extend this to our problem- sets
of nested rings. Utilizing our assumption that the outside
diameter of one ring touches the inside diameter of the
ring larger than it, we can model our set of rings as each
having the same amount of compression. Because, as soon
as you compress the outer ring, all the rings inside of it
must also compress that same amount due to no gaps in
between ring layers. So our final force-compression curve
is a dimensionalized sum of each of the force-compression
curves of the ring layers inside the coil. This is the model
that we will use to compare to our experimental results, and
employ in our tunable stiffness manipulator.

III. TUNABLE STIFFNESS SPRING

A. Design

Our spring in Figure 6 consists of a ring that is made using
10mil PET (Polyethylene terephthalate) film. This outside
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Fig. 4. This figure shows how a non-dimensional ring deforms with a
force from a range of 0 - 110.
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Fig. 5. This figure shows how a non-dimensional ring deforms with a
force from a range of 110 - 250.

ring dictates the outside diameter of the spring. Inside this
ring lies 7mil PET of the shelf balloon tape which is 15mm
wide film with .25” holes every .5”. This balloon tape can be
spooled inside the spring, effectively increasing the thickness
of the ring which increases its stiffness. We can control the
amount of spooled material with a micro motor attached to
a gear which can interface with the holes in the balloon tape
to move material inside the spring, or out of the spring into a
storage container. This storage container actively spools the
material inside an enclosed space to keep the material ready
to use inside the spring. This container is powered with a
twisted o-ring belt system from the main micro motor that
actuates the balloon tape material. This allows us to utilize
only one motor for our design, which reduces overall weight.

Fig. 6. Tunable stiffness spring. Printed in PLA using a Prusa Mini at
15% infill.

IV. EXPERIMENTS

A. Single Spring Experiments

Using an MTS (Material Test System) machine, we con-
structed springs of varying widths, diameters, and material
thicknesses in order to analyze our model fit to experimental
data. This system generates Force-displacement data that we
can directly match with our model after we dimensionalize
our solution with the specific ring constants. For each spring,
we gathered a force-displacement curve for a set of 1-20 coils
at half-coil intervals. An example of this data is shown in
Figure 7.
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Fig. 7. Experimental MTS test for a range of 1-20 coils with a total
compression amount of 30mm.

We performed identical tests to the ones in Figure 7 with
different springs with slightly different material thicknesses,
diameters, and widths and then compared the results to
our theoretical model. The resulting percent error scaled by
maximum force in the test is shown in Figure 8
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Fig. 8. Four tests with various springs compared to theoretical model.
Each test has a separate percent error scale due to the changes in maximum
force for the experiments. It can be seen that with less compression, our
model fits much better than with large deformations. We believe this is due
to friction, material plastic deformation, gaps between the coils, and model
assumptions.

B. Manipulator Experiments

Using this spring, we built a 4DOF manipulator shown
in Figure 9. This manipulator utilizes four tunable stiffness
springs in a square shape connected with a plate on the top
and the bottom, connected with an actuated string. When the
string is pulled, the system will compress, and will return
to it’s original state when the string is released. Using this
system we can control the angle and height of the top plate,
as well as the stiffness of the total structure.

Fig. 9. Spring Module

1) Workspace Experiments: Using this system, we per-
formed some manipulator workspace experiments by placing
the springs at extreme opposites of stiffnesses, and compress-
ing the module fully. By replicating this process for all four
sides, and then at the corners of the square we can construct
an approximated manipulator workspace that is shown in
Figure 10
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Fig. 10. Culmination of workspace tests for the tunable stiffness manip-
ulator. Data was gathered by tracking the position of the top plate of the
structure using a motion capture system.

Once we have attained the workspace, we can begin
pathing positions for our manipulator to follow. Figure
11 shows our attempts at creating a square, and a circle
respectively.
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Fig. 11. Pathing tests for a 1.5mm Square, and 1.5mm Circle. These tests
took place over approximately 1.5 minutes.



V. CONCLUSION

In this paper we introduced a model and design for a novel
tunable stiffness spring design that is fast, lightweight, and
can be utilized for millimeter accurate use in complex soft
mechanisms. This work more broadly is intended to intro-
duce the concept of coiled film as a strategy to attain simple
tunable stiffness structures. Our methods are purposely easily
replicatable with a 3D printer and off the shelf motors and
plastic materials.
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