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INTRODUCTION OPTIMIZATION WORKFLOW

Sensory feedback in Brain-Machine Interfaces
(BMI) currently rely on either user-in-the-loop
calibration or closed-loop algorithms to replicate
desired neural responses downstream of
stimulation areas. However, both approaches are
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The set of identified stimulus patterns would
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Downstream response recorded in motor cortex (M1)
since often implanted in BMI and highly connected to S1.

Perceptual ground truth determined by mapping
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32 electrode array in S1

S1 multiunit activity

electrode 11
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whisker representations (“barrels”) in S1. We safely

assume stimulation of different barrels evokes

trial

discriminable percepts.
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time and validated and expanded upon a full v5S1-
vM1 and Whisker Mapping dataset. To further
test perceptual discriminability, rats will be
trained on a three-alternative forced choice
(3AFC) “oddity” task to validate in behavioral
experiments.

Algorithm: Future directions of the algorithm
include different scheduling methods (Bayesian)
and explicit mentioning of stimulation
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