

Streamlining Magnetoelectric Magnetic Field Sensor Testing

Jonathan Tan Friday, July 30, 2021

Magnetometer Applications

Magnetoencephalography (MEG)

- Measuring magnetic fields produced by the brain
- Small amplitude magnetic fields (10 fT 1 pT)
 Current Devices for MEG
- Superconducting Quantum Interference Devices (SQUIDs)
- Optically Pumped Magnetometers (OPMs)

Magnetoelectric Magnetic Field Sensors

- Room temperature
- No lasers

[1] Boto, Elena, et al. "Moving magnetoencephalography towards real-world applications with a wearable system." *Nature* 555.7698 (2018): 657-661.

Clockwise from left: SQUID, OPM^[1], Magnetoelectric Magnetometer

Magnetostriction

- Magnetostrictive materials strain in external magnetic field
- Magnetic dipoles align in DC field
 - Dipoles rotate and stretch
 - Produces strains
- Largest response desired for sensing an AC magnetic field
 - Bias field required for most strain per change in magnetic field

Piezoelectricity

- Piezoelectric materials produce a voltage in response to a strain
- Crystal structure deforms in response to external force
- Displacement of charges leads to a charge differential

Tetrahedral Structure of Aluminum Nitride^[3]

Magnetostriction

- Magnetostrictive materials strain in external magnetic field
- Magnetic dipoles align in DC field
 - Dipoles rotate and stretch
 - Produces strains
- Largest response desired for sensing an AC magnetic field
 - Bias field required for most strain per change in magnetic field

Piezoelectricity

- Piezoelectric materials produce a voltage in response to a strain
- Crystal structure deforms in response to external force
- Displacement of charges leads to a charge differential

Tetrahedral Structure of Aluminum Nitride^[3]

Magnetostriction

- Magnetostrictive materials strain in external magnetic field
- Magnetic dipoles align in DC field
 - Dipoles rotate and stretch
 - Produces strains
- Largest response desired for sensing an AC magnetic field
 - Bias field required for most strain per change in magnetic field

Piezoelectricity

- Piezoelectric materials produce a voltage in response to a strain
- Crystal structure deforms in response to external force
- Displacement of charges leads to a charge differential

-5

R. Jahns et al., "Giant Magnetoelectric Effect in Thin-Film mosites," Journal of the American Ceramic Society, vol. (6), pp. 1673-1681, 2013. aliable: https://api.istex.tfratk/67375/WNG-6NS5WS00_ ultext.odl. D0: 10.1111/iace.12400_

Magnetostriction

- Magnetostrictive materials strain in external magnetic field
- Magnetic dipoles align in DC field
 - Dipoles rotate and stretch
 - Produces strains
- Largest response desired for sensing an AC magnetic field
 - Bias field required for most strain per change in magnetic field

Piezoelectricity

F

- Piezoelectric materials produce a voltage in response to a strain
- Crystal structure deforms in response to external force
- Displacement of charges leads to a charge differential

Magnetoelectric Sensors

- Magnetoelectric effect: Transfer of energy between magnetic and electric fields
- Piezoelectric and magnetostrictive layers mechanically coupled
 - Magnetostrictive layer strains from magnetic field
 - Strains in magnetostrictive layer transferred to piezoelectric layer, creating detectable voltage

7

Testing ME Sensors

- Electrical •
- Magnetic

🐯 Penn Engineering

Modulation

Magnetic Testing Results

MH2 LrgFeCoOut_Bias 10 (S21)

4.28

43

LrgFeCoOut_Bias11 (S21)

4.32

4.339

----- LigFeCoDut_Bias 12 (S21)

4.259

-105

145

47

4,210

4.24

Current Testing Structure

Setup

- DC Bias
 - Permanent magnets
- RF Magnetic Field
 - Wound coils
- Drawbacks
- Unstable
- Precision of bias field

Improved Design

- Designed in SolidWorks
 - 3D printed by Penn Biomedical Library 3D Printing
- PCBs designed in Eagle
 - PCBs fabricated at OshPark
- Component

Renn Engineering

- Microscope stage cover
- Electromagnets
- RF PCB coil
- Hall Effect Sensor
- Perpendicular bias magnets

DC Electromagnet

Goals

- 20 mT DC magnetic field Considerations
- Optimize radius and length for magnetic field strength
 Accomplished
- 240 turns, 5A
 - 11.6 mT with air core
 - 13.5 mT with magnetic core
- Current controllable magnetic field

Printed Circuit Board RF Coils

Purpose and Goals

- Low frequency magnetic field
- High frequency magnetic testing
- Save space in testing structure for electromagnets
- Considerations
- Optimize coil turns, spacing between turns, inner/outer radius
- Inductive coils at high frequencies

Final Testing Structure

- Successfully tested devices on designed structure
 - Electrical
 - Magnetic
 - Modulation

Frequency (MHz)

Acknowledgements

- The Olsson group
 - Dr. Troy Olsson
 - Sydney Sofronici and Michael D'Agati
- National Science Foundation
 - NSF REU grant no. 1950720
- University of Pennsylvania Libraries' Biomedical Library

Questions?

