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Magnetometer Applications

Magnetoencephalography (MEG)
• Measuring magnetic fields produced by the brain
• Small amplitude magnetic fields (10 fT – 1 pT)
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[1] Boto, Elena, et al. "Moving magnetoencephalography towards real-world 
applications with a wearable system." Nature 555.7698 (2018): 657-661.

Current Devices for MEG
• Superconducting Quantum 

Interference Devices (SQUIDs)
• Optically Pumped Magnetometers 

(OPMs)
Magnetoelectric Magnetic Field 
Sensors
• Room temperature
• No lasers

Clockwise from left: SQUID, OPM[1],
Magnetoelectric Magnetometer



Magnetostriction
• Magnetostrictive materials strain in 

external magnetic field

• Magnetic dipoles align in DC field
– Dipoles rotate and stretch
– Produces strains

• Largest response desired for 
sensing an AC magnetic field
– Bias field required for most strain 

per change in magnetic field

Piezoelectricity
• Piezoelectric materials produce a 

voltage in response to a strain

• Crystal structure deforms in 
response to external force

• Displacement of charges leads to a 
charge differential
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Scientific Background

Tetrahedral Structure of 
Aluminum Nitride [3]

[2] R. Jahns et al, "Giant Magnetoelectric Effect in Thin-Film 
Composites," Journal of the American Ceramic Society, vol. 
96, (6), pp. 1673-1681, 2013. 
Available: https://api.istex.fr/ark:/67375/WNG-6NS5WS00-
P/fulltext.pdf. DOI: 10.1111/jace.12400.
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Magnetostriction Piezoelectricity
• Piezoelectric materials produce a 

voltage in response to a strain

• Crystal structure deforms in 
response to external force

• Displacement of charges leads to a 
charge differential
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Scientific Background
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• Magnetic dipoles align in DC field
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Magnetoelectric Sensors
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• Magnetoelectric effect: Transfer of energy between 
magnetic and electric fields

• Piezoelectric and magnetostrictive layers 
mechanically coupled
– Magnetostrictive layer strains from magnetic field
– Strains in magnetostrictive layer transferred to 

piezoelectric layer, creating detectable voltage



Testing ME Sensors

• Electrical
• Magnetic
• Modulation
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Modulation Testing Results

Magnetic Testing Results

Electrical Testing Results



Current Testing Structure

Setup
• DC Bias

– Permanent magnets
• RF Magnetic Field

– Wound coils
Drawbacks
• Unstable
• Precision of bias field
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Permanent Magnets
for biasing

RF coils



Improved Design

• Designed in SolidWorks
– 3D printed by Penn Biomedical 

Library 3D Printing
• PCBs designed in Eagle

– PCBs fabricated at OshPark
• Component

– Microscope stage cover
– Electromagnets 
– RF PCB coil
– Hall Effect Sensor
– Perpendicular bias magnets
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DC Electromagnet

Goals
• 20 mT DC magnetic field
Considerations
• Optimize radius and length 

for magnetic field strength
Accomplished
• 240 turns, 5A

– 11.6 mT with air core
– 13.5 mT with magnetic core

• Current controllable 
magnetic field
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Printed Circuit Board RF Coils

Purpose and Goals
• Low frequency magnetic field
• High frequency magnetic 

testing
• Save space in testing 

structure for electromagnets
Considerations
• Optimize coil turns, spacing 

between turns, inner/outer 
radius

• Inductive coils at high 
frequencies



Final Testing Structure

• Successfully tested devices 
on designed structure
– Electrical
– Magnetic
– Modulation
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Questions?
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