
Exploring and Developing Tools for Autonomous
Surface Vehicles

Abstract—Autonomous Surface Vehicles (ASVs) that operate
in field experiments require tools to help understand, manage,
and develop the hardware and software. Building these resources
requires expertise in many areas of engineering including:
electrical engineering, computer science, mechanical engineering,
physics, and mathematics. This project explores a wide range of
software and hardware tools utilized in deploying ASVs. The
software tools explored aim to design different behaviors for
both miniature surface vehicles (mASVs) and a larger Unmanned
surface vehicle (USV). Behaviors are any set of instructions given
to a robot for it to perform. Two behaviors are studied: one for
the mASV to interact with objects, and one to allow the larger
USV to explore real world environments. Simulation serves as
a visualization tool and a test environment where behaviors can
be examined and analyzed before the experiment is conducted
on the actual robots. Physical experiments are then performed to
verify the performance of behaviors on hardware. In order to run
experiments, it was necessary to develop control and hardware for
the robots, including designing and fabricating a printed circuit
board (PCB).

I. INTRODUCTION

In the last decade, robots have increasingly become more
sophisticated and are no longer limited to mundane tasks. One
tool that has become increasingly investigated in the field of
robotics is autonomy. When given a particular task, various
obstacles or factors may impede a robot from successfully
completing its job. This is where autonomy would prove
useful. Autonomous robots are robots that can change their
behavior in response to unanticipated events during operation.
The idea of combining robotics with autonomy creates oppor-
tunities to improve upon the precision and efficiency robots
have in carrying out the tasks they are instructed to perform.
For instance, autonomous boats could be instructed to track
algae blooms [1], and monitor oil spills or survey uncharted
regions of the ocean [2]. Autonomous robots come in many
different forms including: space, air, ground, underwater, and
surface vehicles.

This project focuses on exploring autonomous surface ve-
hicles and developing the sensing and control mechanisms
needed to allow robots to move and operate in the real
world. Robots can perform extremely well in a structured
and controlled environments, like a factory or laboratory
space. However, robots are needed in various real-world en-
vironments which are unstructured, making robotics all the
more challenging. Autonomous behaviors are explored in two
types of Autonomous Surface Vehicles (ASVs): the Clearpath
Heron, and the ScalAR Lab miniature Autonomous Surface
Vehicles, mASVs.

There are three main steps that allow a robot to perform
autonomous behaviors. These steps are: sensing, reasoning,
and acting. Sensors are what allow for these robots to gain
information about their environment. After the robot has
sensed different properties of its environment, it then reasons
or develops a plan to perform a behavior. After reasoning,
the robot then performs some action to achieve the desired
behavior. Controllers are instruments used in the reasoning
process to plan a robots movements. One controller widely
used in the field of robotics is a proportional-integral-derivative
(PID) controller. PID controllers can also be used to regulate
behaviors in a robot, where a behavior is a single or series
of action(s) performed by a robot [3]. Examples of behaviors
include having a team of robots swarm together [4], using a
USV to navigate through an obstacle course [5], or instructing
a USV to push an object to a particular location [6]; there are
numerous unique behaviors that can be achieved for robots
using controllers. This paper investigates how to develop the
behavior that allows for autonomous surface vehicles to push
an object to a particular goal. ASVs that can push an object
can have many major applications, such as creating robots
to support construction or build structures on their own in a
remote environment [6], [7].

Pushing objects is a basic behavior that gives robots the
ability to manipulate their environments to be in a more
desirable manner. Enabling robots with the ability to push
objects would allow them to manipulate the spaces around
them, thus significantly increasing the types of tasks robots can
be instructed to perform. In this project, the surface vehicles
use the force produced by their motors to move an object to
a target location. This project begins with one mASV that
receives instructions on how to apply thrust to its motors. The
mASV will then use these instructions to push a Styrofoam
ball to a specified target location. After which, more robots
were to be introduced to identify if objects can be manipulated
more efficiently with the aid of multiple robots.

The contributions accomplished during the course of the
SUNFEST program are:

1) A discussion of new tools learned throughout the sum-
mer

2) Development of a PCB for RS232 to USB
3) Design and evaluation of a USV behavior
4) Field experiments with a fully autonomous USV in the

river



II. BACKGROUND

Experimental robotics requires hardware and software to
work together to enable a robot to move and sense in the
world. This project focuses on learning about the software and
hardware necessary to run experiments with robotic boats.

A. Robot Simulation

One of the software related tasks this project covers is
writing a python point robot simulator which uses a second
order differential equation model of a robot’s state [8]. This
was extended to consider different control methods of multiple
robots, for example potential fields [4] and PID controllers
[3], to generate different robot behaviors. In addition, this
work involves writing python code to control the miniature
Autonomous Surface Vehicles (mASVs) for experimental test-
ing. Finally, this project covered the foundations of the Robot
Operating System (ROS) and applying those skills to develop
nodes which can control a larger Unmanned Surface Vehicle
(USV).

B. Robot Control

PID controllers utilize a closed loop feedback mechanism
that allows them to generate output commands to a robot for
more precise operations [3]. Utilizing the information from
the sensors, controllers can adequately make adjustments to
the robot to achieve the desired behavior. This would be very
useful for instance if a surface vehicle needed to move to a
specific location. The vehicle could initially be on track to
get to the desired destination, however during this process,
the vehicle may veer off course as a result of drag or some
other impediment. A PID controller allows the surface vehicle
to automatically adjust itself using the data it obtains from
its different sensors. In this case the vehicle could use it’s
GPS sensor to relay information about the vehicle’s current
position to a controller. The controller could then output
adjusted motor commands to correct the vehicle’s course. PID
controllers are not only useful for keeping a surface vehicle
on course, but have many other practical applications such
as controlling temperature, pressure, angular speed and many
other properties.

C. Robot Hardware

This project also involved building electronic components
to improve the wiring on the Clearpath Heron USV. This
consisted of designing, testing, and installing a printed cir-
cuit board which allows more sensors to be connected to
the Clearpath Heron USV [9]. Through this process, critical
information about sensor functionality and application was
acquired to identify how robots can utilize sensors to improve
their behaviors.

III. METHODOLOGY

A. Robotics Tools

Autonomous Surface Vehicles depend on many different
systems to ensure they run properly. In this project, one of the
primary software-related tools utilized was a framework called

Robot Operating System (ROS) [10]. ROS is an open source
software framework that is used to design software for robots.
This project utilized ROS to handle message-passing from the
robot to the programmers algorithm. ROS is important for this
project because it allows access to read in different properties
of the robot as well as send instructions to the robot to execute.
ROS uses ”topics” to divide up different properties of a robot.
A ROS topic acts as a channel through which information
can be read from or sent through. For example, the command
”rostopic echo /position” tells ROS to get the information
about the robots current position, while the command ”rostopic
pub position [given location]” tells ROS to publish a command
to the robot to go to the given location. ROS plays a key
role in this project by setting up the framework necessary
for communication to the autonomous surface vehicles. ROS
is supported for linux based systems, however this project is
conducted primarily using a virtual machine.

Robotics is a highly collaborative field, and as a result,
version control is a integral part of this project. Github is the
designated version control software used in this project. It is
used to store code and access the necessary repositories to run
the experiments on the autonomous surface vehicles.

B. Design and Production of a PCB

This project covers a hardware related tasks, which includes
designing a printed circuit board (PCB) for the Heron. The
purpose of the PCB is to allow for multiple peripheral de-
vices or sensors to be connected to the Heron. The Heron
uses RS232 signals, which are a widely used communication
protocol. However, most modern sensor devices now use a
Universal Serial Bus (USB) communication protocol, as it
is a more simple and efficient form of communication [9].
The problem is that the Heron and the sensors communicate
using different protocols. The solution is to develop a PCB
to convert RS232 signals to USB, extending the number of
additional sensors that can be added to the Heron. The PCB
design used Kicad, an open source software for electronic
designs [11]. To begin fabricating the RS232 to USB converter,
a schematic is created. The schematic consisted of all the
electronic components necessary to build the PCB. A list of
components can be found in the appendix.

After designing the schematic, a footprint of the PCB is
created. During the footprint process, copper tracks and copper
fills are placed down onto the board. Copper tracks act as
the wiring for each component, while copper fills are large
areas of copper that allow for easier tracing for similarly traced
components. Once all the copper traces and fills are placed,
a check is done to ensure all the components are connected
correctly. Examples of these diagrams can be found in Figure
1.

Once everything is properly connected, the footprint for the
PCB is shipped to a manufacture and the components are
ordered. The PCB is soldered together following the outline
in the footprint.



Fig. 1. Top left is schematic of PCB, top right is the footprint, bottom is
digital 3D view of PCB

C. Unmanned Surface vehicle Behavior Design

1) Simulation Framework: A simulation is developed in
Python and utilizes two libraries, namely PyGame for visu-
alization and Pymunk for physics handling. The simulation
consists of three main elements: an object, a boat object,
and the target position. The generic object should initially
be stationary and able to respond to collisions, the boat
class’s velocity and heading should be controllable, and the
target position should be a stationary point in the simulation
environment. In the simulation, a pushing behavior is defined
for the boat object. This behavior is just a function that orients
and moves the boat object in a manner that gets the generic
object closer to the target destination with each time step. The
purpose of this simulation is to aid in testing the behaviors
before they are implemented on a miniature surface vehicle.

D. Pushing an Object

There are three steps to perform a pushing behavior, Figure
2. An overview of these steps are as follows:

1) Find the vector from the center of the object to the
target position. There are many different ways to find
this vector, but the most straight forward method is to
subtract the target position from the objects position.
The outcome of this operation will result in the desired
vector, pointing from the center of the object to the
target position. This vector is useful because it provides
information about the magnitude and direction the object
needs to move to reach the target position.

2) After identifying the vector, the next thing to find is
the starting position of our boat object. To find this
position, take the vector from step one, normalize it and
flip it in the opposite direction (this is accomplished by
multiplying it by -1) to ensure that the starting position
is behind the object to be pushed. The vector can then
be scaled using the dimensions of the boat object to
prevent the boat from colliding with the object. After

finding the starting position, orient the boat towards this
position and move it to the start.

3) After the boat has successfully made it to the starting
point, we will need to utilize the original vector from
step one. The goal is to have the boat push the object
directly along the vector from the object to the target
position. The boat’s position is already aligned with
this vector, so all that is left to do is ensure that the
orientation of the boat is facing the object and activate
the motors to provide the boat with acceleration to push
the object towards the target position.

Fig. 2. Illustration of vectors used for pushing behavior

1) Surveying Behaviors: A different high fidelity simula-
tion framework, ROS Gazebo, is used to design surveying
behaviors for a larger ASV. The specific surveying pattern is
to traverse a desired area along the Schuylkill River in a lawn
mower pattern. This section discusses the function created to
generate the waypoints in a lawn mower pattern along the
river.

The waypoint generator takes in as argument the (x, y)
coordinates of a four-sided boundary. The function assumes
that the given boundary is a convex quadrilateral and returns
a list of waypoints within this quadrilateral in the shape of a
lawnmower pattern. The function allows the user to specify
how many legs of the lawn mower pattern are desired, as
well as, the direction to draw the pattern in, vertically or
horizontally.

To begin, it is important to distinguish between the at-
tributes of a vertical lawn mower pattern and a horizontal
one. A vertical pattern would alternate from top to bottom
(or vice versa) and would have shorter horizontal segments. A
horizontal pattern would alternate from left to right (or vice
versa) and would have shorter vertical segments. This paper
will mainly discuss the algorithm used to generate the vertical



lawn mower pattern, but the horizontal pattern can be created
using a similar technique.

Fig. 3. Example of vertical and horizontal patterns. Left vertical, Right
horizontal

For any vertical lawn mower pattern being drawn on a
quadrilateral course, the waypoints will lie on two vectors:
vector A and vector B. These vectors correspond to two
opposite sides of the given course. The function assumes that
the vector A is pointing from coordinate 1 to coordinate 2
and the vector B is pointing from coordinate 4 to coordinate
3. To determine how many points each vector should have, the
function utilizes the specified number of lawn mower patterns
the user entered. After the first lawn mower pattern, each
pattern needs 2 additional points to be considered a complete
pattern. Thus, the equation for the total number of points
needed to achieve the desired amount of patterns is as follows:

T = 2 + (2 ∗ P ) (1)

where T is the total number of waypoints, and P is the number
of desired patterns.

To find the number of waypoints on each vector, the total
number of waypoints (which will be an even integer) is divided
in half. This ensures both vector A and B will also have an
equal number of points on both sides. The function will then
divide the length of each vector by the number of points on
each respective side. This will tell the function the length of
each sub-segment on a given vector. This length will be used
to ensure that each point along a given vector will be equally
distanced away from other points along that same vector (It
is important to note that the sub-segment length should be
calculated twice, once for vector A and another for the vector
B). The function will start at coordinate 1 and generate points
in the direction of coordinate 2 that are all equal distanced
away from each other. These points will then be stored within
an array, and in the end, the function will have a array of
points along vector A. The same process should be repeated
for the vector B, which is the vector pointing from coordinate
4 to 3. At the conclusion of this process, there will be two
separate arrays that contain points that lie along two opposite
sides of the given course.

Fig. 4. Illustration of how lawn mower pattern is created

Finally, a third array is created which will serve as an
ordered array of all the waypoints. This array is populated
using the arrays that contain points along vector A and vector
B. As seen in figure 4, for a vertical pattern, the function
uses one point from the vector A, then one from vector B,
before alternating to use one point from vector B, then one
from vector A. The function arranges the third array in this
manner by alternating between which array it pulls from first.
For example if array A is the array of points along vector A,
and array B is the array of points along vector B, then if the
function first pulls from the array A before array B, then the
next time it will pull from array B before array A.

At the end of this process, the function will return an
array of ordered waypoints that follow a lawn mower pattern
constrained within the specified boundary. Examples of the
lawn mower function can be found in Figure 7

IV. EXPERIMENTAL SETUP

A. Miniature Autonomous Surface Vehicles

Miniature autonomous surface vehicles (mASVs) are un-
manned mobile robots that utilize differential drive to move
around an environment. These mobile robots were developed
in ScalAR lab and are placed in a ≈ 3x4x2 meters tank.
The mASVs consist of two motors, an arduino, a rubber lid,
and a hull to house all the components. The arduino is used
to directly control the mASV’s motors. The arduino outputs
commands to the motors, telling each one how fast it should
spin. The turning of the motors generate thrust and allow
distinct movements to be performed by the mASVs. In addi-
tion, the arduino can receive remote commands from an Digi
XBee. An Xbee is a device that can remotely communicate
with an arduino via WiFi. The purpose of this setup is to
connect the Xbee to a computer which will then be able to
send instructions to the arduino on how to move the mASVs
motors.

A mASV’s movement is determined as follows:
• When the left motor spins at a faster rate than the right

motor then the mASV will turn right.



• Similarly, when the right motor spins faster than the left,
the mASV will turn left.

• When both motors spin at the same rate and in the same
direction, the mASV will move forward.

(Note: While there are many more movements that can be
achieved, for the purpose of the project these are the three
focused on)

While the mASVs have the ability to move freely in a given
space, as stated earlier, in water, there are many impediments
to a surface vehicles movements. To counteract this, a PID
controller is implemented. For the PID controller to work
properly, it needs information about the mASVs geometry. To
obtain this information a motion capture system is mounted
above the tank to track the orientation and position of the
mASVs. The motion capture system used in this project is
Optitrack, created by NaturalPoint, Inc, and the software used
to interact with the capture system is Motive. The Motive
software streams data about a rigid body - in this case
the mASVs, which is then published in a ROS node. After
properly setting up the Optitrack and the Motive software, the
full state of the mASV is used by the PID controller. This
information can then be used to derive the angular and linear
velocities of a mASV. In Python, a boat class is implemented
to track information about a single mASV. The boat class has
four main methods:

1) ”update boat state” - Updates the state of the boat every
time data is received from the Optitrack

2) ”set desired speeds” - Sets the desired velocity and
heading of the mASV.

3) ”boat pid” - PID controller that outputs motor com-
mands to obtain desired position and heading.

4) ”send command” - This method is responsible for send-
ing motor commands to the Xbee to send to the remote
Arduino on the mASV.

The PID controller will ensure that the desired velocity and
heading is achieved by the mASV. With this setup a proper
closed loop control is achieved; if the boat veers off course,
it will now be able to correct its self, and properly complete
the instructions it was given. Using this set up, the pushing
behavior can now be implemented and executed by the mASV.

B. Heron

The Heron is ScalAR lab’s larger USV. It was developed
by Clearpath Robotics and is equipped with various sensors
that can be used for a variety of different experiments. Some
sensors on board the Heron include a GPS, IMU, camera,
and depth sensor. The Heron is a pontoon boat, with water
jet propulsion that allows it to move around in an aquatic
environment. It can be controlled manually using its remote
controller or autonomously by sending it commands. To
achieve autonomy, the Heron uses a ROS based autonomy
framework. For example, a user can obtain information about
the depth sensor, position, or velocity of the boat. In addition to
reading from these ROS topics, the user can write commands
to these topics as well, allowing users to manipulate different
properties within the Heron.

V. RESULTS

A. Miniature Autonomous Surface Vehicles

The mASV experiments were not finished due to time
constraints. However, the simulation results show that the
procedure descried earlier for pushing objects was effective.
As seen in Figure 5 the distance between the object and the
goal decrees over time as the robot pushes the object to the
goal.

Fig. 5. Distance Error vs Time

B. Heron Field experiments

The Heron had many moving components. This work fo-
cused on the development of a PCB and generating waypoints.

1) PCB Final Result: A limited amount of sensors could be
connected to the Heron at a given time, since it used a RS232
protocol to transmit data. However this issue was resolved
after creating a printed circuit board to convert RS232 signals
to USB. Figure 6 shows the completed PCB used on the Heron.

Fig. 6. Image of assembled RS232 to USB Converter



Fig. 7. Example of other lawn mower patterns on quadrilateral courses

Fig. 8. Red line is the point to point path between supplied waypoints. The
black line is the trajectory the boat took.

Fig. 9. 3D reconstruction of Schuylkill riverbed using depth sensor

2) Heron Surveying an Environment: Overall, many im-
provement have been made to the Heron to create a powerful
tool for research. The Heron is now equipped with a fully
functional depth sensor, IMU, GPS, camera, and other sensors
that allow it to collect useful data about its environment. More
sensors can now be connected to collect more information
about the boat’s environment. In addition, the boat can now

perform autonomously, meaning it can carry out much more
complex tasks and more properly adjust to unexpected events
in its environment. Following waypoints while mapping the
riverbed of the Schuylkill river was just one example of the
Heron’s use case. This fully function autonomous surface
vehicle can collect a wide array of sensor data which can be
used to: map the river bed, understand water currents, capture
salt fronts or other time varying properties of the river.

The first results demonstrated that the robot was able to
collect data from ROS topics. More specifically, the depth
sensor ROS topic needed to be examined for accuracy. To
do this, the boat was placed in the Schuylkill river and driven
manually around the river. After driving the Heron in an open
loop square, a 3D plot of the depth sensor data was generated
using matlab. Using the depth sensor ROS topic, the plot
accurately reconstructed the riverbed, Figure 9

The next task was to get the Heron moving autonomously.
To achieve this, another PID controller was implemented to
maintain the desired behavior. The PID controller, similar to
the mASVs, controlled the position and heading of the Heron.
In contrast to the mASVs, the Heron contains an internal GPS
to acquire information about its position, and a IMU that
outputs information about the boats orientation. To achieve
the best performance in the PID controller, the sensors were
tested for accuracy. Finally, to test autonomy, the lawnmower
waypoint generator was used. The function generated a list
of coordinates for the Heron to autonomously follow. In the
end, the boat was successfully able to follow the lawnmower-
patterned coordinates, while utilizing its depth sensor to map
out the Schuylkill river, Figure 8.

VI. DISCUSSION

One of the important questions that arose throughout this
project was regarding the fidelity of a simulation. Simulations
are important as they provide visualizations and a general
understanding of how a robot will perform if given the same
commands in the real world. While simulations play an impor-
tant role in robotics, an important question to address is how
realistic does a simulation need to be before considered ”good”
enough. A simulation’s fidelity has to do with how well the
simulation imitates what will happen in the real world. When
designing a simulation for the mASVs, various properties
could be included such as modeling the drag force of water,
or realistic collisions. While adding all these properties that
are found in the real world add more fidelity and complexity
to the simulation, it comes at the price of time. Mimicking
the real world within a simulation can quickly become time
consuming, and in most cases it is impossible to model every
phenomenon possible in an experiment. Instead a threshold
should be set in place to asses whether or not a simulation
is ”accurate” enough to give a reasonable conception of what
will happen in an experiment. In this project, the simulation
only modeled what was vital to the experiment. For the
mASVs pushing behavior, collision between the boat and the
Styrofoam object only needed to be modeled. To handle this,
Pymunk, a simple physics engine, was used to model how the



object would move based on collisions with the boat. While
complex/realistic simulations are a great tool for testing out
ideas, it is important to balance accuracy with efficiency as
well.

One distinct problem arose during mASV pushing objects
simulation evaluation. Depending on where the boat is placed,
this procedure could result in the boat colliding into the
Styrofoam object to get to the ”start” position. Since the start
position is found by flipping the vector pointing from the
Styrofoam object to the target position, if the boat is ahead of
the Styrofoam object then Styrofoam object’s position could
intersect with the vector pointing from the boat to the start
position. This would result in the boat colliding with the
Styrofoam object in an undesirable manner. The simulation
revealed that, if this were to occur in the actual experiment,
the boat could potentially push the Styrofoam in the wrong
direction in an attempt to get to the starting position. To
resolve this issue, one solution would be to drive the boat to
a intermediate ”start” position that is behind the Styrofoam
object, but not on the vector pointing from the Styrofoam
object to the target position. To do this, another vector can
be created that is perpendicular to the vector pointing from
the Styrofoam object to the target position. This vector should
pass through the original starting position and should be scaled
according to the Styrofoam objects size. If the boat travels to
this intermediate point first before proceeding to the ”start”
point, then it should no longer collide with the Styrofoam
object prematurely.

Field experiments highlighted another important question
which is the importance of sensors. Sensing is an important
aspect of humans life; it is through sensing that humans are
able to interact with the world around them. For autonomous
vehicles to interact with their environment, they too must
also have the proper sensing mechanisms. It is important for
robots to have accurate and reliable sensor data in order to
ensure proper autonomous behavior. For example, the Heron
had a faulty IMU sensor was able to completely disrupt the
PID controller. The IMU sensor gave the controller wrong
information about the orientation of the Heron, and as a result
it was unable to properly perform the instructions given to
it. The depth sensor produced a lot of noise in its readings,
but after adjusting its position, this problem was resolved.
Likewise, during UAV experiments, an uncalibrated sensor
prevented the drone from properly taking off. In short, sensors
are critical to the development of autonomous surface vehicles.
As sensor technologies continue to advance, robots will be able
to autonomously carry out more complex tasks in an efficient
manner.

A. Lessons Learned

This project explores some of the interdisciplinary aspects
of research in Robotics. Robotics is a field that requires a
combination of principles from other fields such as mechanical
engineering, electrical engineering, and computer science. As
a computer science major, it was important to acquire skills
and knowledge in both software and hardware in order to assist

with research within the field of robotics. Although software
and hardware may seem to contrast one another, when brought
together opens opportunities for for intricate and dynamic
machines.

VII. CONCLUSION

In conclusion, autonomy is a powerful tool for robotics.
It allows robots to adapt and adjust to obstacles they may
face within their environments. This project aims at presenting
an interdisciplinary approach to exploring some of the tools
needed to properly run experiments and test behaviors on
autonomous surface vehicles (ASVs). A combination of sim-
ulations as well as physical experiments are incorporated into
this work to test behaviors on ASVs, as well as verify them
in the physical world. Sensor technologies are an important
aspect of the field of robotics. As sensor technologies continue
to advance, autonomous surface vehicles will become increas-
ingly more precise and efficient in their behaviors, allowing
more complex and dynamic tasks to be assigned to robots.

VIII. APPENDIX

A. PCB Components

1) 1 FT232RL chip
2) 1 MAX232EIN
3) 2 100nf Capacitors
4) 1 4.7uf Capacitor
5) 1 10nf Capacitor
6) 5 1uf Capacitors
7) 1 Red LED
8) 1 Green LED
9) 1 Boost Converter

10) 1 USB
11) 1 Ferrite Bead

IX. ACKNOWLEDGMENTS

I would like to thank University of Pennsylvania’s SUN-
FEST REU for the opportunity to work and gain valuable
experience in the field of robotics this summer. Thank you
to Torrie Edwards, my research mentor, for all your guidance
and support throughout this program. Thank you Dr. Hsieh for
being an incredible PI and allowing me to be apart of your lab
this summer. Special thanks to everyone at ScalAR labs for
incorporating me into the lab and making my experience an
extremely valuable one. I would also like to thank the National
Science Foundation for funding this program and making this
opportunity possible (Grant Number 1950720).

REFERENCES

[1] K. G. Sellner, G. J. Doucette, and G. J. Kirkpatrick, “Harmful
algal blooms: causes, impacts and detection,” Journal of Industrial
Microbiology and Biotechnology, vol. 30, no. 7, pp. 383–406, Jul
2003. [Online]. Available: https://doi.org/10.1007/s10295-003-0074-9

[2] T. Salam and M. A. Hsieh, “Heterogeneous robot teams for modeling
and prediction of multiscale environmental processes,” arXiv preprint
arXiv:2103.10383, 2021.

[3] Y. Chung, C. Park, and F. Harashima, “A position control differ-
ential drive wheeled mobile robot,” IEEE Transactions on Industrial
Electronics, vol. 48, no. 4, pp. 853–863, 2001.



[4] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stable flocking of mobile
agents part i: dynamic topology,” in 42nd IEEE International Conference
on Decision and Control (IEEE Cat. No. 03CH37475), vol. 2. IEEE,
2003, pp. 2016–2021.

[5] P. C. Chen and Y. K. Hwang, “Practical path planning among movable
obstacles,” Sandia National Labs., Albuquerque, NM (USA), Tech. Rep.,
1990.

[6] J. Chen, M. Gauci, W. Li, A. Kolling, and R. Groß, “Occlusion-based
cooperative transport with a swarm of miniature mobile robots,” IEEE
Transactions on Robotics, vol. 31, no. 2, pp. 307–321, 2015.

[7] J. Stüber, C. Zito, and R. Stolkin, “Let’s push things forward: a survey
on robot pushing,” Frontiers in Robotics and AI, vol. 7, p. 8, 2020.

[8] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and
control. John Wiley & Sons, 2020.

[9] V. Vijaya, R. Valupadasu, B. R. Chunduri, C. K. Rekha, and B. Sreedevi,
“Fpga implementation of rs232 to universal serial bus converter,” in 2011
IEEE Symposium on Computers & Informatics. IEEE, 2011, pp. 237–
242.

[10] Stanford Artificial Intelligence Laboratory et al., “Robotic operating
system.” [Online]. Available: https://www.ros.org

[11] J.-P. Charras, F. Tappero, and W. Stambaugh, KiCad Complete Reference
Manual, 2018.


