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ABSTRACT

Spectrograms carry all necessary information for reliable human and computer perception
of speech. This paper discusses the importance of spectrogram features used by a
recognition algorithm developed by Ali et al. as they relate to human perception.
Features, including MNSS, burst frequency, formant transitions, voicing onset time, and
voicing/unvoicing information are defined and their importance to computer stop
consonant recognition described. Confirming many previous findings, burst frequency
and formant transitions were found to be most important in the perception of speech
synthesized from spectrograms while other features played a secondary role. Software
tools developed that should facilitate other similar investigations are described.
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1. INTRODUCTION

Though it has been extensively studied since the 1950s, computer speech
recognition continues to pose a modern engineering problem. Challenges include the
difficulties of processing continuous speech, distinguishing between members of a large
vocabulary,  creating a speaker-independent system, and  coping with environmental
noise.

 Speech recognition has already found many industrial and other applications.
Recent uses of this technology include interactive telephone menus, automated credit-
card number retrieval systems, and computer dictation. Automatic recognition of speech
is more than a gimmick: people communicate most efficiently via speech, with the
average person speaking approximately five times faster than he can type and perhaps ten
times faster than he can write [1].

However, the various problems mentioned above, among others, have prevented the
creation of a system capable of processing unrestricted human speech with an unlimited
vocabulary. Instead, the best speech recognition systems to date have been limited to
specialized applications, with the vocabulary restricted to a certain set of jargon and
lengthy training period often required to adjust a computer to each individual speaker.

In line with the ultimate goal of creating a completely speaker-independent
platform capable of discriminating among elements of a vocabulary of arbitrary size, we
have turned our efforts to studying the acoustic features of phonemes, the basic,
indivisible building blocks of speech. Phonemes, when properly spoken, all exhibit a set
of invariant, speaker-independent properties. They also enable computers to represent
language in a more compact form. For instance, phonemes can reduce the intractable
problem of distinguishing among the 5000+  words of commonly used English to
recognizing 50–60 subword units.

Many different methods, with varying success, have been used to implement speech
recognition. The most popular and successful ones use Hidden Markov Models (HMMs),
or probabilistic models that rate how much a given speech signal deviates from an
internal template. However, HMMs are speaker-dependent and require inconvenient
training periods. Our approach to speech recognition is to represent phonemes in a
graphical form, where key acoustic/phonetic features are made visible. We hope to make
computers recognize speech by searching for these features.

1.1 Anatomy of Stop Consonants

The focus of this project has been on a class of phonemes known as stop
consonants. Though they have been studied since the birth of speech recognition, even
modern automatic speech recognition systems are unreliable at classifying them because
of their short duration and context dependence.

This set includes six phonemes, /t/, /k/, and /p/, which are unvoiced, meaning that
the vocal chords do not vibrate when they are spoken, and /d/, /g/, and /b/, which are
voiced. Stops are formed by the complete obstruction of the vocal tract. The exact
location of this obstruction, called the place of articulation, can be the velum (palate),
where /k/ and /g/ are formed; the alveolus, where /t/ and /d/ are formed; or the lips, where
/p/ and /b/ are formed.
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As illustrated in Figure 1, stop consonants begin with a period of silence, called
the closure. This part of the consonant is caused by the obstruction of the vocal tract.
Next comes a noisy period called the burst, which is typically followed by a vowel.
Collectively, these are known as an utterance.

Figure 1: Three dimensional plot of a stop consonant followed by a vowel.

1.2 Representations of Speech

To represent a speech signal graphically, we used spectrograms, or three-
dimensional plots, with time on the x-axis, frequency on the y-axis, and a third
dimension, intensity, usually depicted in the form of colors.

Spectrograms are usually interpreted in one of two ways. The first is as plots where
intensities represent the amplitudes of sine waves of specific frequencies at certain points
in time. Speech is generated from these graphs through sine wave synthesis, where
amplitude-modulated sine waves are superposed to form a single time signal.

To create these spectrograms, a speech signal is divided into short fragments of
equal duration, typically between 10 and 30 ms, and frequency data is extracted from
each one. When a linear frequency scale is desired, Fourier transforms are used. Other
times, when a logarithmic scale is desired, matched filters are used. This is the same way
humans perceive sound. Hairs in the cochlea form logarithmically spaced filter banks.
Bark’s scale is a commonly used logarithmic scale because it is modeled after the
frequency sensitivity of human hearing.

The second way to interpret spectrograms is through cepstral analysis.. This method
models speech as comprising a source, corresponding roughly to the human vocal chords,
and a filter, which contains information about words being shaped by the vocal tract. To
model the time dependence of the filter, linear and time-invariant (LTI) filters, each of
which has static response characteristics, are concatenated in time. Again, speech is
divided into windows where each one is the convolution of a source with the impulse
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response of one of the LTI filters (convolving an input with the impulse response of an
LTI system is a standard way of determining the output of the system – in this case the
input is the source signal and the system is the filter represented by the vocal tract). Since
speech information is primarily encoded in vocal tract positions and not the source
(which contains information about inflection and mood), in cepstral analysis,
spectrograms represent the frequency data of each of the individual LTI filters, each of
which occupies a different position in time.

 These spectrograms have an advantage over those used in sine wave analysis
because of their speaker and mood independence. Cepstral spectrograms are unaffected
by the pitch or cadence of a speaker’s voice, which becomes part of the source data.

To separate the source and filter, the cepstrum of a speech signal is taken. This
operation is defined to be a Fourier transform followed by a logarithm followed by an
inverse Fourier transform. It can be shown that the cepstrum of the convolution of two
functions is the sum of the cepstrum of each of the individual functions. In addition, if the
two original functions have different frequency characteristics, as the source and filter do,
their cepstrums will occupy different positions in time, making separation easy.

2. METHODS

2.1 Problem Description

This project had two parts. The ultimate goal was to evaluate the importance of
various acoustic/phonetic features of stops used by automatic speech recognition
algorithms as they pertained to human perception. The second was incidental to the first
objective: to develop software tools that would aid in such an investigation.

2.2 Algorithmic Methods of Automatic Stop Consonant Recognition

An automatic speech recognition system developed by Ali et al. [2] using a hard
decision algorithm has a demonstrated accuracy of 97% for voicing detection, 90% for
place of articulation detection, and 86% for overall classification of stops. The following
are the main features used for classification by the algorithm.

2.2.1 Burst Frequency and Vowel Second Formant Frequency

Burst frequency (BF) is a parameter aimed at finding the frequency where power
is concentrated in a stop. It is defined by A. Ali et al. [2] as:

Essentially, at each time position of the stop burst, there exists a position of
maximum intensity. Each of these positions has a corresponding frequency. The burst
frequency is the minimum value of that set.

A formant is a peaked region in a spectrogram. Formants are numbered from
lower frequencies up, so the second formant of a vowel is the peak occupying the second-
lowest frequency position.
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The speech recognition system implemented by  A. Ali et al. heavily relies on the
burst freqency of a stop and the second formant frequency of its following vowel for the
identification of alveolars and velars.

2.2.2 Formant Transitions

The frequencies of formants often change with time. This is known as formant
motion. Liberman et al. [3] noted that that how vowel formants moved was determined
by the place of articulation of the preceding stop. These motions occur during transition
periods between the onset of a vowel and its nucleus, and are falling for velars, rising for
labials, and are sometimes falling and sometimes rising for alveolars, depending on the
vowel. The algorithm developed by Ali et al. places formant transitions in a secondary
role for stop identification, because of the unreliability of determining the motion of the
formants. However,  clear and strong formant motions will override all other factors
considered by the algorithm.

2.2.3 Maximized Normalized Spectral Slope

Known as MNSS, the Maximized Normalized Spectral Slope is a parameter
affected by the steepness of a stop burst’s peaks and its energy relative to the following
vowel. It is defined as:

This represents the magnitude of the maximum value, over the stop burst, of the
partial derivative of the spectrogram intensity with respect to frequency, divided by the
maximum of the set of values created when the intensities over all the frequency channels
are summed.

The algorithm employed by A. Ali et al. uses MNSS values to distinguish between
labials and other stops, where labials are classified by their flat spectra and, thus, low
MNSS values.

2.2.4 Voicing

Two main parameters were used by A. Ali et al. to detect voicing in stops:
prevoicing and voicing onset time (VOT).

Prevoicing is voicing during the closure of a stop. Usually, this appears as low -
frequency energy before the actual burst of the stop.

Voicing Onset Time (VOT), is the duration of the stop burst. Unvoiced stops were
found to have longer VOTs.

2.3. Software Tools
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2.3.1 The Speech Synthesis Program and S.A.M. GUI

Written by Gavin Haentjens (EE) of the University of Pennsylvania, the speech
synthesis program is a collection of Matlab scripts that generates speech from
spectrograms.

The Spectrogram Analyzer & Manipulator, or S.A.M, was first developed by
O’Neil Palmer (CSE) and Kelum Pinnaduwage (EE) of the University of Pennsylvania,
with the goal of allowing a researcher to edit and create acoustical patterns to better
understand speech.

These two packages were connected by their choice of file format for storing
spectrograms.

2.3.2 New Features

Chief among the new features were hacks of both the speech synthesis program and
S.A.M.(2.0) that permitted an integration of the two programs into one platform, enabling
the user to edit and play spectrograms on the fly. This was accomplished through
ActiveX automation, with S.A.M. acting as the client and Matlab acting as the server.

The user is given a choice between sine wave synthesis and cepstral synthesis. If he
chooses sine wave synthesis, he is given the option of randomizing the phase of the
superposed sine waves. When using cepstral synthesis, a source file must be specified.

Also, as the frequency channels of a spectrogram using cepstral analysis are
calculated differently from those of a sine-wave analysis, choosing cepstral synthesis will
cause S.A.M. to use this formula for calculating the frequencies of each of the channels:

where k = 0 . . . .N – 1 represents the filter number and N represents the total
number of filters.

Also, the user is able to see three-dimensional plots of selected portions of the
spectrogram. Often, peaks and other features can be more intuitively understood when
they are represented as shapes rather than colors.

Another added function was the ability to upload a matrix from Matlab into the
copy buffer of S.A.M. In conjunction with the ability to download matrices that was a
result of the on-the-fly speech synthesis implementation, this allows the user to take a
portion of the spectrogram, process it in an arbitrary manner in Matlab, and to send it
back to the GUI to add it on to the main spectrogram.

We found that averaging every 16 channels together in a 256-channel spectrogram
to create 16 data-carrying channels and replacing the vacated channels with all zeros
leads to dramatically improved speech quality. Therefore, when the user selects cepstral
analysis, he is also given the choice to zero-pad the spectrogram before speech synthesis.
This feature, illustrated in Figure 2, is primarily used for 16-channel spectrograms created
in the above manner.

,
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Figure 2: Converting a spectrogram from 256 channels to 16 and adding 0-
padding

2.4 Testing Human Perception

Human perception was tested by taking spectrograms that generated intelligible
speech when played back and modifying them to see how perception was affected.
Because of time constraints, fewer trials were run than desired and many experiments
were not performed on spectrograms using sine wave analysis.

The main method of testing human perception was as follows:

• Two different spectrograms, A and B, containing different stop consonants
and preferably the same following vowel are concatenated into one
spectrogram.

• The burst of B is replaced with that of A.
• A listening test is performed on the modified B. If the utterance sounds as if

it begins with the original consonant, then important acoustic information
must reside in the vowel. If the utterance sounds as if it begins with the stop
from A, then information in the imported burst is more important than that in
the vowel.

• If the first condition is true, then the second formant of the vowel is removed
to determine whether or not it is the site of important information

• If the second, or neither, condition is true, then the copied stop burst is
manipulated to attempt to make the uttered syllable sound as if it begins with
the stop consonant that used to occupy its position

With a target stop consonant in mind, the manipulations to the copied stop burst
attempt to determine the features that are important for human classification of stops that
reside in the stop bursts themselves. Any important information in the vowel can already
be considered to be present, since the vowel originally followed the target stop. To
achieve the target consonant, the utterance must be made to sound as if it begins with the
target stop more than it does any other phoneme.
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2.4.1. Burst Frequency and Vowel Second Formant Frequency

We found that perception was strongly linked to burst frequency.
In all 13 trials performed, the target consonant was achieved. In nine of these trials,

we had to modify the BF to achieve the target. In seven cases, the utterance, after the
copy step, sounded as if it began with the imported burst. In the other two cases, the
utterances began with an unclassifiable sound.

Though the target was clearly achieved in these cases, the quality of the utterance
was good only in one of the trials.

Burst frequency was modified in eight out of the nine cases by isolating the main
peaks of the stop burst and shifting them upwards or downwards. In one case, the main
peaks were deleted and the location of secondary peaks determined the location of the
burst.

2.4.2. Formant Transitions

Of the 13 trials, four resulted in the target consonant being immediately achieved
after the stop consonant transfer step. In these cases, the information for the target
consonant was primarily encoded in the formant transitions of the following vowel.
Interestingly, in two of the four cases, when the second formant was removed, the target
stop was still perceived, indicating that something other than the second formant contained
important information. In one, removing the second formant of the vowel resulted in the
perceived consonant to be that encoded by the burst, and in the final case, removing the
second formant created an unclassifiable sound.

Also, in a separate experiment, we successfully replaced the burst of the stop with
random noise without affecting stop perception. This is another instance where clear
formant motion can override information in the stop burst.

2.4.3. Maximized Normalized Spectral Slope

This feature was found to be relatively unimportant to human perception. Though
previous researchers found that the amplitude of the stop burst relative to the vowel could
influence the perception of labials, in none of the 80 samples analyzed did this parameter
affect perception meaningfully.

MNSS experiments were conducted mainly by modifying burst amplitude. In order
for MNSS to meaningfully distinguish between labials and non-labials, it must be
demonstrated that 1) non-labials have large MNSS values and labials have smaller ones,
and that 2) a shift in perception can be induced by decreasing non-labial amplitudes so
that their MNSS values become comparable to labial ones, or vice-versa. In the observed
spectrograms, frequently not even the first condition was achieved. Also, in no case did
shifting MNSS cause a change in perception from a labial to a non-labial.
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2.4.4. Voicing

In cepstral analysis, voicing is a function of the source and not the spectrogram.
Features related to voicing, such as prevoicing and VOT, are correlated statistically to
voicing but do not themselves cause it.

Source files are generated by the speech synthesis program from recorded speech.
The important information in these source files is when there is voicing and when there is
noise. Often, the synthesis program incorrectly identifies when there is voicing, so speech
synthesized using these source files can be excessively noisy. We solved this problem by
synthesizing speech using a constantly voiced monotone source. This has the additional
benefit of being uniform across all spectrograms.

Despite being constantly voiced, this source does not inhibit human distinction
between voiced and unvoiced cognates of stops, or any other phonemes, for that matter.
We therefore conclude that voicing/unvoicing information is unimportant for human
perception of speech.

In none of the 13 trials was the addition of prevoicing or an alteration to VOT
necessary to achieve the target stop. In one case, changing VOT lead to a higher-quality
target consonant.

Trials conducted separately suggest that VOT can sometimes cause shifts in
perception between voiced an unvoiced cognates. Out of ten cases this was true in one.

2.4.5. Other Tests

The other tests run had more to do with speech synthesis quality than phoneme
recognition. We experimented with two methods of spectrogram compression: reducing
the number of frequency channels, and changing a spectrogram from using a continuous
intensity scale to a binary one.

Surprisingly, reducing the number of frequency channels from the default number
of 256 in the spectrograms generated by the speech synthesis program to 16 channels
dramatically improved speech quality. This can be explained by considering how the
spectrograms were compressed. Blocks of 16 channels in the original spectrogram were
averaged together to form single channels, canceling out much of the noise that they may
have been carrying. Speech synthesis was then performed by first padding the missing
channels with zeros such that the reduced spectrogram effectively contained 256
channels.

Other 16-channel spectrograms were generated by applying linearly spaced,
notched filter banks to the 256-channel spectrograms. Speech generated from them was
virtually identical to those created by the averaging technique.

Speech quality was also tested on channel sizes other than 16. A ranking of their
relative ease of comprehension, from best to worst, is as follows: 16, 32, 64, 128, 256, 8,
and 4. Smaller spectrograms contained less noise but also less information, causing a
sudden loss of quality for spectrograms smaller than 16 channels. The four-channel
spectrogram produced speech that was unintelligible to anyone who did not already know
what the spectrogram was supposedly saying.

We explored another method of compressing spectrograms in which intensity
values beyond a certain threshold were mapped to the maximum intensity value of the
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spectrogram, and those below the threshold were given zero intensity. This binary
representation of intensity led to comprehensible speech in spectrograms that had at least
16 channels, though this comprehension is possible only with context clues. Individual
syllables were sufficiently marred that phonemes could no longer be clearly identified.

3. CHALLENGES

A set of features will define a phoneme if and only if they cause a human to hear it.
We are the ultimate standard against which speech recognition systems are judged.
Algorithms use parameters for speech recognition that themselves do not define the
phoneme; rather, a host of unnamed features that happen to be statistically correlated to
those features are what really affect human perception of speech. For instance, BF is
related to where energy is concentrated in a stop consonant. However, knowing the
formula for BF, a human editor could easily modify a single pixel of a spectrogram to
completely change the value of BF, simply by picking a pixel occupying a low frequency
position and making it exceptionally intense. Listening tests will not be affected at all by
this change, since it affects only one pixel out of the thousands that comprise a
spectrogram. A computer algorithm will be completely thrown off, however, because the
correlation between BF and energy concentration has been removed.

Computers and humans use different sets of features to classify speech. The set that
computers use is much smaller and is connected to the features that humans use through
certain correlations. In evaluating the importance of various parameters that computer
algorithms use as they relate to human perception, a researcher must be careful not to
remove these connections, or he will arrive at the trivial result that those parameters have
no importance at all.

Defining a valid change to a spectrogram is difficult. The result of the change must
be something that could conceivably arise through an actual recorded speech signal. To
preserve the realism of spectrograms, we restricted ourselves to moving and resizing
already existing peaks.  Creating peaks was to be avoided, if possible.

Of course, a seemingly realistic change may, in fact, never occur in normal speech
signals.

Another challenge was recalcitrant data that refused to conform to expectations.
Initially, we sought to demonstrate the unimportance of MNSS by showing that non-
labials could have their peaks reduced sufficiently to drop their values of MNSS into the
characteristic range of labials without impacting human recognition. This would have
been especially meaningful because the algorithm developed by Ali et al. considered low
MNSS values to be a sufficient condition for labial classification. By violating that
condition, we would have demonstrated the unimportance of MNSS to human perception.
Unfortunately, MNSS values of labials were not found to be significantly lower than
those of non-labials, as previous researchers had found. In fact, many times they were
greater. This seems to indicate that the speech samples we worked with were exceptions
to a general rule, and that any conclusions extracted from them would therefore be
questionable.

Perhaps most difficult of all, though, was objectively rating speech quality. Often,
knowledge of the speech contents of a spectrogram dramatically boosted the perceived
quality. Also, subjects evaluating the quality of a speech signal frequently gave it
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different ratings between different instances of listening to it, despite the signal having
not changed. These factors made a quantitative approach to research difficult.

4. RECOMMENDATIONS

We noted the following list of bugs and problems with the GUI. Future researchers
may wish to fix them:
• The program does not properly load files into a paste buffer.
• Sometimes the program crashes during Matlab ActiveX automation. The error is

difficult to reproduce.
• The ability to change the x- and y-scales of the spectrogram without having to reload

it would be convenient
• Spectrograms typically take 15 to 20 seconds to load, much longer than most

commercial programs take to load graphics files. The bottleneck in system
performance comes from the use of the method Pset to render the pixels in the picture
boxes. The setPixel and getPixel APIs are much faster and should be considered.

• When a region of the spectrogram selected to be copied to the clipboard, the box is
drawn slightly off.

• In zoom mode, the box dimensions must be even numbers or the program crashes.
• When region is cut out from within a zoom box, if the brush color in zoom is different

from that of the main screen, the zoom mode and main screen will disagree over the
color of the excised region.

• If Matlab is manually closed, the GUI becomes confused and crashes when it
attempts to send control signals to Matlab.

• When a brush is used to draw a pixel in zoom mode, the pixel is drawn slightly off,
though this otherwise does not affect program performance.

• When a 256-channel spectrogram is zoomed in on, row one of the spectrogram is
never present.

• The program crashes when attempting to load spectrograms beyond a certain size.
• Copy selections are not made correctly when the spectrogram is beyond a certain size.

Another recommendation is to follow up on the curious observation that removing
the second formant of a vowel following the burst of a stop consonant still resulted in
perception of the target consonant, despite the stop burst belonging to that of a wholly
different stop consonant. Something other than the second formant in a vowel apparently
contains stop consonant information.

5. CONCLUSION

As in previous experiments, BF and formant transitions were found to be the most
important perceptual clues to human classification of stops.  Important information in the
vowel may reside in places other than the second formant.

Though voicing itself had no affect on perception, VOT was found, in a few cases,
to shift perception between voiced and unvoiced cognates.

All results, however, were obtained using synthesized speech. These conclusions
may not hold for natural speech.
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Many software tools were developed during this project and many previous ones
were enhanced, which should assist in further study of human acoustical perception.
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