Microfabrication of Heterogeneous, Optimized Compliant Mechanisms

SUNFEST 2001

Luo Chen

Advisor: Professor G.K. Ananthasuresh

Fig. 1. Single-material Heatuator with selective doping on one arm (G.K. Ananthasuresh)

- Monolithic micromachined structures
- Devices that deform flexibly to achieve useful work when actuated

Examples:

- Compliant overrunning clutches offer high torque and minimizes problems with assembly
- Micro-compliant pantographs can amplify force and motion at the micro scale

Fig. 2. Micro-compliant clutches (BYU)

Fig. 3. Micro-compliant pantographs (BYU)

Micro-electro-mechanical Systems (MEMS)

- Structures that have static or moveable parts with some dimensions on the micron scale
- Devices combining electrical and mechanical components
- Transducers: devices that converts input energy of one form into output energy of another

Question: What if MEMS are made to contain properties of compliant mechanisms?

Fig. 4. Electro-thermal linear micromotor using v-beams (J. Maloney – U.Maryland)

- MEMS devices that are based on joule heatinginduced thermal expansion
- With input of electrical power yields large forces and deflections
- Micro-mechanical structures that perform micro-manipulation and micro-positioning tasks

Fig. 5. Heatuator: electro-thermal in-plane actuation – composed of a single material (J. Maloney – U.Maryland)

Two-material ETC Mechanism

micro-gripper embedded

with ETC actuation

(G.K. Ananthasuresh)

Fig. 7. (a) Basic model of two material topology optimized compliant mechanism, (b) simulation showing displacement

Flow Chart of Manufacturing Process for Two-material Compliant MEMS

MEMS: Actuators

Compliant Mechanisms and Electro-thermal Actuation

Designing Method

Need New Fabrication Process for Heterogeneous Device

Bulk Micro-machining

Electroplating

Release Structure with Wet Etching

Creating the Cavity With Bulk Micro-machining

Fig. 8. Cavity created on SOI wafer with lithography, etching and e-beam techniques

Electroplating Theory

- Potential exists between cathode and ions in gold solution
- External voltage creates ion concentration gradient across diffusion region

Reduction of SOI wafer at cathode with gold ions

Fig. 9. Electrochemical Cell

Fig. 10. Electroplating model

Electroplating Gold

Adjusting parameters for obtaining *high-resolution morphology*

- Current density
- Electroplated area
- Temperature
- Forced convective techniques

Solutions to Non-uniform Gold Deposits

- Reduce the current density applied
- Maximize the reaction kinetics of electroplating
 - Control electroplated area
 - Stir
 - Heat

Non-uniform sized grain of gold deposits

Morphology of Gold Deposits

Reason for electroplating uniform gold deposits: the *performance* of ETC devices depends on *electrical*, *mechanical*, *and thermal* boundary conditions

Significance of *low current*density: smoother gold surface,
uniform-size gold deposits →

better morphology

Top View of Gold Deposits

Fig. 12. SEM: Gold Deposits at 10 mA

Fig. 13. SEM: Gold Deposits at 2 mA

Lower current density works best:

- produces less hydrogen bubbles
- keeps the pH of the gold solution constant
- maintains high current efficiency that is lost from the hydrogen production

- 2mA → yielded about 14 µm/hr plating rates of gold deposits
- Above 2mA current applications
 → yielded greater plating rates
 but wider ranges of deposition
 rates
- Below 2mA → not enough energy to drive chemical reaction

Wet Chemical Etching

 Back-side etching of silicon substrate with KOH and black wax

11g. 13

Results: ~15 hour etching at about 0.56 µm/min

A Novel Masking Method

- Melt black wax on glass
- Apply pressure to press silicon wafer into black wax
- Cover wafer with black wax except for the area of interest
- Black Wax

 Silicon Wafer

 Glass Substrate

- Immerse Glass substrate attached with silicon wafer into KOH solution
- Remove bubbles off etched surface (e.g. stirring)

Fig. 16. Masking with Black Wax

Future Work: Electro-thermal Actuation

- Complete microfabrication of compliant microactuator
- Electro-thermal-compliant microactuation by applying voltage
- Determine maximum actuator displacements and forces
- Analyze current and temperature distribution, and thermal properties (e.g. conduction, convection, and radiation) in the twomaterial structure

Heatuators

Fig. 16

Fig. 17

Acknowledgements

Special thanks to:

- Dr. G.K. Ananthasuresh
- Jun Li and the rest of the Compliant Microsystems group
- Vladimir Dominko
- SUNFEST and NSF