
126

Technical Report TR17OCT03

University of Pennsylvania
Center for Sensor Technologies

Philadelphia, PA 19104

SUNFEST REU Program

Binaural Sound Localization

NSF Summer Undergraduate Fellowship in Sensor Technologies
Emery Ku (Electrical Engineering) – Swarthmore College

Advisor: Dr. Dan Lee

ABSTRACT

Acoustic localization is an important process used by humans and many animals.
Bringing this sense to an artificial system has many possible applications. The system
explored here is the commercially available Sony Aibo ERS-210 robot dog. The primary
goal is to use this robot dog to track white noise sources in the forward hemisphere.
Physically modifying the original equipment allowed for better tracking of such sounds in
the vertical direction; prior to this modification, there was very little variation in the
spectrum of the recorded sound as a function of elevation. Templates of spectra at
different elevations combined with the time delay between ears allowed for varied
accuracies. The lowest standard deviation of errors occurred at a position directly in
front of the robot dog, while the greatest errors were at the periphery of its sight. The
range of standard deviation of errors for phi and delta in the forward hemisphere are as
follows: lowest standard deviation of error in Delta occurred at 15 degrees azimuth and
0.3 radians elevation or (15, 0.3): 0.1042; highest standard deviation of error in Delta at
(-90, 0): 25.804; there was never any error in Phi at these locations: (-45, -0.6), (45, -0.3),
(5 & 15 & 45, 0), (-45 & -15 & 15 & 45, 0.3), (0 & 15, 0.6).

127

Table of Contents
1. INTRODUCTION

2. BACKGROUND

2.1 Human Localization of Pure Tones – Two Cues for Localization
2.2 Human Localization of Complex Sound Sources – A Third Cue

3. SONY AIBO® ROBOT DOGS

4. THEORY AND METHODS

4.1 Cues
4.2 Calculations

4.2.1 Time Delay
4.2.2 Elevation

5. RESULTS

6. DISCUSSION AND CONCLUSIONS

7. ACKNOWLEDGEMENTS

8. REFERENCES

9. APPENDICES

Appendix A – Matlab Code
Appendix B – Standard Deviation of Errors for Delta and Phi

128

1. INTRODUCTION

The sense of hearing is an integral part of the human experience. Audition allows us
to communicate with others, navigate the world around us, and perceive and avoid
dangers. The spatial component of hearing is crucial for these uses whether to center in
on the voice of a speaker, or to steer through traffic. Several main characteristics of a
sound act as cues for localization. Given the right circumstances, (eg. frequency
spectrum, position) humans can detect a shift of approximately 1˚. [1] Translating the
human auditory process to an artificial system poses an interesting challenge in addition
to offering numerous significant applications.

This experiment reported in this paper evaluated the suitability of a robot dog for use

as an acoustic localizer to a white noise sound source. The Aibo communicated with a
PC via a wireless Ethernet connection and all calculations were performed in Matlab.

2. BACKGROUND

2.1 Human Localization of Pure Tones – Two Cues for Localization

The localization of steady pure tones is very unnatural for humans, as sinusoidal
sounds do not occur in nature. However, it is instructive to examine this process since
the same methods apply to more complex sources. Figure 1 shows the three-dimensional
space surrounding a subject’s head, mapped onto a sphere. Thus, direction of any sound
source relative to the listener can be specified by its azimuth and elevation.

Figu
re 1: The spherical coordinate system about a human subject. [1]

129

 The speed of sound is finite; a listener’s two ears are spatially separated. Thus,
any sound originating from a location that is not on the median plane will reach the two
ears at different times. This acoustic cue is known as the interaural time difference
(ITD). Additionally, if the sound comes from the left or the right, the head will diffract
the sound at low frequencies and act as an attenuator at higher frequencies. This results
in a second cue, the interaural intensity difference (IID). [1, 2, 3] This cue is nearly
ineffectual below frequencies of approximately 500 Hz, though the difference may be as
large as 20 dB at high frequencies. [1]

 At lower frequencies, greater emphasis is placed on the ITD. [2, 3] In this
instance, the time difference is manifested as a phase difference and is readily
quantifiable. However, for a constant tone, changes in the ITD at frequencies above 1500
Hz are nearly undetectable; because the period of the signal is so short, phase shifts are
essentially irrelevant.

 The greatest precision of aural localization of pure tones occurs when the sound
originates from straight ahead (zero degrees azimuth and elevation). [3] This is
illustrated in Figure 2.

Figure 2: Localization precision decreases as the source moves away from the point
directly ahead. [1]

2.2 Human Localization of Complex Sound Sources – A Third Cue

130

Complex sound sources are abundant in nature. They differ from steady pure tones in

that they have onsets and offsets, as well as an amalgamation of many different
frequencies. The additional characteristic of a sound helps in classifying its source
direction is the shape of its frequency spectrum; by definition this applies only to
complex sounds. This cue is known as the spectral cue, or the head-related transfer
functions (HRTF). [1, 2]

Spectral cues allow for mapping of sounds in the vertical plane. The spectra of

various sounds change with the elevation of the source as a result of various physical
parameters. These may include the size and shape of the torso and shoulders, and most
critically, of the outer ear or pinna. The changes in the magnitude of certain frequencies
of the source spectrum are due to the reflections’ cancellations and reinforcements given
the shape of the human appendages. The frequency range that contains the most
pertinent data (changes due to changes in source positioning) is approximately 5-18 kHz.
[3]

3. SONY AIBO ROBOT DOGS

The goal of this project was to bring aural localization to
an artificial system, in this case the commercially available
Sony Aibo ERS-210A. The Aibo robot dog is equipped with
two sets of internal microphones that can be set to
“unidirectional” or “omnidirectional” mode in software. [4]
For the purposes of this project, the microphones were left on
omnidirectional mode. In addition, an important feature is the
CMOS image sensor installed at the front of the head. This
camera was important for standardizing placement of the
speaker, as the head can be set to turn in precise directions.
Figure 3 shows a typical Aibo robot dog.

Figure 3: A Sony Aibo ERS-210 robot dog.

 It was necessary to modify the original microphone configuration of the robot dog
in order to obtain more usable data. Figure 4 illustrates this alteration. It is further
explained in section 6.

131

Figure 4: The modified Sony Aibo robot dog. The microphones have been placed inside
the “ears,” which now point downward.

4. THEORY AND METHODS

4.1 Cues

 The two cues utilized for localization with the Sony Aibo are the ITD and the
Spectral Cue. The ITD was chosen over the IID because of its greater accuracy. The
sound source chosen contains information at all frequencies (white noise), which allows
more flexibility regarding choosing cues.

 The ITD alone provides enough information to map out an infinite cone about the
axis formed by the two microphones. The surface of this cone contains the set of all
possible source locations given a particular ITD. This is commonly known as the “Cone
of Confusion,” and is illustrated in Figure 5.

132

Figure 5: The Cone of Confusion.

The formula for the angle of incidence α (from the cone to the axis) is calculated given
geometric constraints:

()
fd
cn

d
ct sin ==α , (1)

where c is the speed of sound, t is the time delay in seconds, n is the time delay in
samples, f is the sampling frequency, and d is the distance between the microphones. [2]

If the angle of elevation is also known, the set of possible source locations is reduced
to two rays that lie on the cone. This theoretical ambiguity of two directions is explained
by the horizontal symmetry of the head; one ray points onto the forward hemisphere
while the other is a reflection onto the rear hemisphere. [1, 2] The solution pointing
backward is considered extraneous in this experiment, as source locations are restricted to
the forward hemisphere.

4.2 Calculations

4.2.1 Time Delay

The process to calculate the time difference between the two acquired samples occurs
in the frequency domain. Although this may initially seem counterintuitive, the results
are much more accurate than those obtained by matching the two time-domain samples.
Often there is some degree of distortion from one channel to the other due to the head,
thereby rendering direct comparison very difficult. In addition, work in the time domain
is limited by the sampling frequency. In the case of the Aibo robot dog, the maximum

133

audio sampling frequency is 16,000 Hz. [4] Given that the distance between the two sets
of microphones is approximately 5cm, the number of samples corresponding to different
time delays at different points on the sphere therefore has a range of about 10 points.
This range corresponds to a maximum accuracy of 18˚ along the horizontal plane which
is inaccurate at best.

A more refined approach uses a cross-correlation algorithm based in the frequency

domain. A time delay translates to the following linear phase shift in the frequency
domain [5]:

() () dt*f-j2efM dt-tm π•=> (2)

Therefore, maximizing the cross-correlation function between two complex functions Xl
and Xr by varying the value of the time shift dt, it is possible to obtain a much more
precise angle of incidence [6]:

()[]fdtj
rl eXconjXdt π2*max −•= (3)

Thus, the correct value of dt is obtained when the above argument in equation 3 is
maximized. This applied in conjunction with equation 1 provides the angle of incidence
for the Cone of Confusion.

4.2.2 Elevation

The calculation of the elevation relies solely on information obtained from spectral
cues. The HRTF contains spectral information and is a function of source position
(azimuth, elevation, distance). A transfer function is given by the following:

)(
)()(,

, fS
fXfH φθ

φθ = , (4)

where X(f) is the recorded spectrum at a given location and S(f) is the source spectrum.
The recorded and source spectra are calculated by taking the Discrete Fourier Transform
of the respective time-domain signals. Figure 6 illustrates an averaged HRTF at various
elevations and zero degrees azimuth.

134

Figure 6: HRTF (frequency in Hz vs. magnitude) at five different elevations, zero
degrees azimuth. Note that because of the Nyquist Rate, the frequency range of acquired
data is limited at 8 kHz. [8]

 The numerous sharp spikes and dips are problematic for a simple template
matching algorithm, though matching a new transfer function with known templates that
represent different locations is the simplest method available. The most relevant features
of the transfer functions are the wide troughs and peaks. To isolate these data, the
Discrete Fourier Transform is applied to the absolute value of the log of the transfer
functions. Speech analysts refer to this strategy as Cepstral Data Analysis. [7]

Cepstral Data = fft(log(abs(TF))) (7)

 In order to ensure accuracy, numerous samples of several different white noise
sources are taken at chosen elevations and azimuths. Each sample is then processed into
complex Cepstral Data. Figure 7 shows the Cepstral Coefficients for one particular
white noise source at a source direction straight ahead (zero azimuth and elevation).

135

Figure 7: First 15 Cepstral Coefficients at a given source location (250 samples).

These values are then averaged together to form one template for this position:

Figure 8: Mean of Cepstral Coefficients at a given source location.

136

 It is not by accident that only the first 15 coefficients are displayed. In fact, the
very first coefficient has been omitted. The 0th coefficient signifies the D.C. offset of the
transfer function and thus can only introduce error. The higher coefficients are ignored
as they represent the amount of successively higher frequency components present in the
transfer function shape. These 30 numbers (15 real, 15 imaginary) are sufficient to
represent the overall shape of the transfer function.

 For each position in space (azimuth, elevation), there are four sources and thus
eight templates total (four for the left, four for the right). Three azimuths were chosen:
–45, 0 and +45 degrees. Sixteen elevations were sampled at 0 degrees, and 13 for both
±45˚. In the final verification of position program, verify5.m (see Appendix A), the same
process outlined above is repeated for a single acquired sample. The first 15 complex
Cepstral Coefficients (not counting the D.C. offset) are then compared to the first 15
Cepstral Coefficients on all of the templates. The minimum of the sum of errors between
the new sample and the templates is then found. The following figure shows a typical
graph of errors at different elevations for a single acquired sample:

Figure 9: Sum of errors between acquired Cepstral Data and Cepstral Templates at
various elevations. Note that the absolute minimum occurred in source 3 (dark green
line) on from the right differences at 0.45 radians elevations.

137

5. RESULTS

Figure 10 shows the standard deviation of errors in the expected vs. measured delta
(azimuth) and phi (elevation) at multiple positions along the horizontal plane, zero
radians elevation. As expected, the angles nearest the center (zero degrees azimuth)
represent the area with least error.

Figure 10: A measure of the error of azimuth (delta) and elevation (phi) at various points
at 0 radians elevation.

Figure 11: Standard deviation of errors of delta (azimuth) along various positions and
five separate elevations ranging from –0.6 radians to 0.6 radians.

138

Figure 12: Standard deviation of errors of phi (elevation) at various positions in space
along five chosen elevations ranging from –0.6 to 0.6 radians.

Precise values of standard deviation of errors can be found in Appendix B.

6. DISCUSSION AND CONCLUSIONS

A number of non-idealities and limiting factors contribute to the imperfections in the
system. One major pitfall is the low sample rate, capped at 16 kHz. Though this seems
reasonable, the Nyquist Rate specifies that the spectrum can only accurately range up to
half the sampling rate, or 8 kHz. [8] This is sufficient to provide enough variation in the
transfer function to distinguish various elevations, but as stated earlier, most spectral
information pertaining to physical parameters occurs within the range of 5-18 kHz.

When the HRTF of the unmodified robot dog was first analyzed, it was found that

there was insufficient variation in the transfer functions at different elevations to allow
for positive matching against a template. Thus the microphones were placed under the
ears to act as an artificial pinna. Given more time, different microphone positions could
have been tried, and perhaps an outer ear could have been built around them to create
more variations in the HRTF that depend on elevation. Another interesting idea might be
to have one ear pointing up and the other pointing down. This asymmetry is used by
certain animals in nature- [2] and might increase the confidence level of the result of a
given elevation.

139

The greatest weakness of the final algorithm is that, in order to correct for position on
the sphere, the accuracy of the angle of elevation is as crucial as the time delay. The
greater the error in either, the more skewed the calculated position. This is most
troublesome in the case of the elevation. As is apparent from Figure 12, the error of phi
is much greater in the lower elevations. This is probably due to the fact that the robot
dog’s ears are pointed down, so there is no diffraction of sound around the ear when the
sound emanates from below. The best solution may be to build a custom outer ear with
folds and sharp corners in order to ensure marked variations in the HRTF at various
elevations.

Another significant issue is that there are only three sets of Cepstral templates at -45,

0 and +45 degrees azimuth. This is the main reason the errors for phi are so high at ±30
degrees. Adding more templates would solve this issue.

Although a number of improvements can be made to this program, the robot dog is

able to accurately localize a white noise sound source at most points in the front
hemisphere. Any additions to the project would be refinements to improve precision.

7. ACKNOWLEDGMENTS

I would like to thank Professor Dan Lee of the University of Pennsylvania for his
encouragement, support, and supervision. In addition, Yuan-Qing Li of the University of
Pennsylvania provided invaluable ideas and comments. I would also like to thank the
National Science Foundation for their support through an NSF-REU grant that made this
program possible.

8. REFERENCES

1. B. Moore, An Introduction to the Psychology of Hearing, Vol 1., Academic Press,
New York. 4th Ed. 1997, p. 210-230.

2. E. Milios, and G. Reid, Active Stereo Sound Localization. Technical Report CS-
1999-09, Department of Computer Science, York University, p. 1-26.

3. E. Ben-Reuven, and Y. Singer, Discriminative Binaural Sound Localization. Hebrew
University, Jerusalem, Israel. 1999.

4. Sony Aibo website. [electronic] Available: http://www.us.aibo.com/

5. M. Selik, and R. Baraniuk, Properties of the Fourier Transform. The Connexions
Project, Rice University, Houston, TX. 2003.

6. Page: 139
[0] Y. Lin, Paper on Fourier Cross-Correlation Methods, Unpublished manuscript, Dept.
of Electrical and Systems Engineering, University of Pennsylvania, 2003.

140

7. P. Zakarauskas, and M. S. Cynader, A computational Theory of Spectral Cue
Localization. Journal of the Acoustical Society of America, vol. 94 (1993) 1323-1330.

8. B. A. Carlson, Communication Systems, McGraw-Hill Companies, New York, 4th Ed.
2001. p. 37.

9. J. Hung, Sound Localization in Reverberant Environment Based on the Model of the
Precedence Effect, IEEE Transactions on Instrumentation and Measurement. vol. 46, no
4 (1997). p. 842-846.

141

9. APPENDICES

Appendix A: Matlab Code

% verify5.m
% dog finds elevation of speaker

close all;

% load templates for cepstral data at -45, 0 and 45 degrees azimuth
load ceptemplate.mat;
load ceptemplateN45.mat;
load ceptemplateP45.mat;
SetDefaultRobot(2);
Effector(15);

% choose which white noise source to try to find.
source = input('Chooses source; enter 1, 2, 3, or me: ','s');
if source == '1'
 ss = load('C:\MATLAB6p5\work\ss.dat');
 ss1 = load('C:\MATLAB6p5\work\ss.dat');
end
if source == '2'
 ss = load('C:\MATLAB6p5\work\s1.dat');
 ss1 = load('C:\MATLAB6p5\work\s1.dat');
end
if source == '3'
 ss = load('C:\MATLAB6p5\work\s2.dat');
 ss1 = load('C:\MATLAB6p5\work\s2.dat');
end
if source == 'me'
 ss = load('C:\MATLAB6p5\work\ssme.dat');
 ss1 = load('C:\MATLAB6p5\work\ssme.dat');
end

ss1 = [ss1' zeros(1,1536)]';
ss1fft = fft(ss1);
pause(1);

% shows you a picture of what the dog sees before proceeding
incorrect = 'y';
while incorrect == 'y'
 Effector([0 0 0 0]'); %prep dog position
 pause(1);
 h=figure(1);

142

 rb_ima=YUVRead;
 image(rb_ima); %gives you a different picture for every new head position
 hold on;
 plot(88,66,'r.') %red dot at center of dog's view
 axis off;
 incorrect = input('readjust? (y/n): ','s');
 pause(1);
end
close all;

% set infinite loop to keep finding speaker until interrupted by user
while 1
close all
Effector([0 0 0 0]'); %set dog's head to standard position
Effector([0 0]') %make sure ears are down
clear check;
earstr = 'down';
pause(2);

[y, userdata] = MicRead;
Effector(15);
micPort = 5002;
xlave = 2;
xrave = 2;
% set while loop to catch white noise sound
rdelta = 2000;
ldelta = 2000;
dt = 1;
% keep taking data points until the onset of the sound source is within the
% 2048 point-long recorded window. Also make sure the time difference does
% not exceed physical limitations to ensure that the data is reliable.

while rdelta > 1535 | ldelta > 1535 | abs(ldelta - rdelta) > 10 | abs(dt) > 2.5e-4
 close all;
 xlave1 = 1000;
 xlave2 = 0;
 xrave1 = 0;
 xrave2 = 0;
 xlave = 1;
 xrave = 1;
 while xlave < 200 | xrave < 200 | xlave1 > 500 | xlave2 > 600 | xrave1 > 500 | xrave2 >
600 %set loop to make sure sound is captured correctly
 soundsc(ss,16000); %play white noise, fs = 16000
 pause(.0625); %delay to give computer time to play noise
 x = double(micread); %dog acquires data from both microphones
 subplot(2,2,1), plot(x(:,1));

143

 axis([0 2048 -4000 4000]);
 subplot(2,2,2), plot(x(:,2));
 axis([0 2048 -4000 4000]);
 xlave = mean(abs(x(:,1))); %these are the thresholds to make sure the sound is
within the window
 xrave = mean(abs(x(:,2)));
 xlave1 = mean(abs(x(1:150,1)));
 xlave2 = mean(abs(x(1900:2048,1)));
 xrave1 = mean(abs(x(1:150,2)));
 xrave2 = mean(abs(x(1900:2048,2)));
 end
 yl = x(:,1);
 yr = x(:,2);
 xlfft = fft(yl); %take fourier transform of acquired time-data
 xrfft = fft(yr);
 Clf = xlfft.*conj(ss1fft); %multiply by the complex conjugate of the source
 Crf = xrfft.*conj(ss1fft);
 clt = ifft(Clf); %take the inverse fourier transform of the above product
 crt = ifft(Crf);
 lhighest = max(clt); %determine number of shifted data points
 rhighest = max(crt);
 ldelta = find(clt==lhighest);
 rdelta = find(crt==rhighest);
 %use the program RefinedCC.m to get a much more accurate time delay (steps through
small time differences in the freq domain)
 [c,peakValue,dt]=RefinedCC(x(:,1),x(:,2),16000,(-10:10)/16000);
 dt
end

%take the data we want (first 512 data points of recorded sound- removes echo) and shift
back to 0
for s = 0:511
 shiftxl(s+1,1) = yl(ldelta + s,1);
 shiftxr(s+1,1) = yr(rdelta + s,1);
end
shiftedxl = [shiftxl' zeros(1,1536)]';
shiftedxr = [shiftxr' zeros(1,1536)]';
close all;

%acquired data processing here
 xlfft = fft(shiftedxl);
 xrfft = fft(shiftedxr);
 xltf = xlfft(1:1024,1)./ss1fft(1:1024,1); %get transfer function from just acquired
sample
 xrtf = xrfft(1:1024,1)./ss1fft(1:1024,1);
 clear shiftedxl shiftedxr

144

 cepltf = fft(log(abs(xltf))); %calculate cepstral data
 ceprtf = fft(log(abs(xrtf)));
 dt

%converting dt to an angle
 theta = -asin(dt*344/.085);
 thetadeg = theta*180/pi
 hyp = sqrt(1000^2+1000^2);

%choose which template to compare
if thetadeg < -20 %choose right template
 thetashift = theta + pi/2;
 dcepdifferencesN45; % finds sum of square of differences of first derivative of all
cepstral data
 xval = [-1.2 : 0.15 : .60];

 subplot(2,1,1), plot(xval,[ldiffs(1,:); ldiffs(2,:)+50; ldiffs(3,:)+100; ldiffs(4,:)+150]);
 title('Left side differences using all sources; N45-Template');
 subplot(2,1,2), plot(xval,[rdiffs(1,:); rdiffs(2,:)+50; rdiffs(3,:)+100; rdiffs(4,:)+150]);
 title('Right side differences using all sources');

 [rl,cl] = find(ldiffs==min(min(ldiffs)));
 [rr,cr] = find(rdiffs==min(min(rdiffs)));
 figure;

 %choose left or right side with lowest error value
 if ldiffs(rl,cl) < rdiffs(rr,cr)
 elevation = xval(cl)
 %calculating delta, actual horizontal turning angle required
 delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 -
(hyp*sin(elevation))^2));
 xd = cos(delta)*hyp;
 yd = sin(delta)*hyp;
 zd = tan(elevation)*hyp;
 %effector([qangle 0 0 0]');
 PointHead([xd yd zd]);
 pause(1)
 k=figure(2);
 rb_ima=YUVRead;
 image(rb_ima); %gives you a different picture for every new head position
 hold on;
 plot(88,66,'r.') %red dot at center of dog's view
 axis off;
 else
 elevation = xval(cr)
 %calculating delta, actual horizontal turning angle required

145

 delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 -
(hyp*sin(elevation))^2));
 xd = cos(delta)*hyp;
 yd = sin(delta)*hyp;
 zd = tan(elevation)*hyp;
 %effector([qangle 0 0 0]');
 PointHead([xd yd zd]);
 pause(1)
 k=figure(2);
 rb_ima=YUVRead;
 image(rb_ima); %gives you a different picture for every new head position
 hold on;
 plot(88,66,'r.') %red dot at center of dog's view
 axis off;
 end
end

if thetadeg > 20 %choose left template
 thetashift = abs(theta - pi/2);
 dcepdifferencesP45; % finds sum of square of differences of first derivative of all
cepstral data
 xval = [-1.2 : 0.15 : .60];

 subplot(2,1,1), plot(xval,[ldiffs(1,:); ldiffs(2,:)+50; ldiffs(3,:)+100; ldiffs(4,:)+150]);
 title('Left side differences using all sources; P45-Template');
 subplot(2,1,2), plot(xval,[rdiffs(1,:); rdiffs(2,:)+50; rdiffs(3,:)+100; rdiffs(4,:)+150]);
 title('Right side differences using all sources');

 [rl,cl] = find(ldiffs==min(min(ldiffs)));
 [rr,cr] = find(rdiffs==min(min(rdiffs)));
 figure;
 %choose left or right side with lowest error value
 if ldiffs(rl,cl) < rdiffs(rr,cr)
 elevation = xval(cl)
 %calculating delta, actual horizontal turning angle required
 delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 -
(hyp*sin(elevation))^2));
 xd = -cos(delta)*hyp;
 yd = sin(delta)*hyp;
 zd = tan(elevation)*hyp;
 %effector([qangle 0 0 0]');
 PointHead([xd yd zd]);
 pause(1)
 k=figure(2);
 rb_ima=YUVRead;
 image(rb_ima); %gives you a different picture for every new head position

146

 hold on;
 plot(88,66,'r.') %red dot at center of dog's view
 axis off;
 else
 elevation = xval(cr)
 %calculating delta, actual horizontal turning angle required
 delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 -
(hyp*sin(elevation))^2));
 xd = -cos(delta)*hyp;
 yd = sin(delta)*hyp;
 zd = tan(elevation)*hyp;
 %effector([qangle 0 0 0]');
 PointHead([xd yd zd]);
 pause(1)
 k=figure(2);
 rb_ima=YUVRead;
 image(rb_ima); %gives you a different picture for every new head position
 hold on;
 plot(88,66,'r.') %red dot at center of dog's view
 axis off;
 end
end

if abs(thetadeg) < 20 %choose center template
 if thetadeg < 0
 thetashift = theta + pi/2;
 else
 thetashift = abs(theta - pi/2);
 end

% sums the derivatives of differences
dcepdifferences; % finds sum of square of differences of first derivative of all cepstral
data

figure
xval = [-1.5:0.15:0.75];
subplot(2,1,1), plot(xval,[ldiffs(1,:); ldiffs(2,:)+50; ldiffs(3,:)+100; ldiffs(4,:)+150]);
title('Left side differences using all sources');
subplot(2,1,2), plot(xval,[rdiffs(1,:); rdiffs(2,:)+50; rdiffs(3,:)+100; rdiffs(4,:)+150]);
title('Right side differences using all sources');

[rl,cl] = find(ldiffs==min(min(ldiffs)));
[rr,cr] = find(rdiffs==min(min(rdiffs)));
figure;
%choose left or right side with lowest error value
if ldiffs(rl,cl) < rdiffs(rr,cr)

147

 elevation = xval(cl)
 %effector([qangle 0 0 0]');
 %calculating delta, actual horizontal turning angle required
 delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 -
(hyp*sin(elevation))^2));
 if thetadeg > 0
 xd = -cos(delta)*hyp;
 else
 xd = cos(delta)*hyp;
 end
 yd = sin(delta)*hyp;
 zd = tan(elevation)*hyp;
 Pointhead([xd yd zd])
 pause(1)
 k=figure(2);
 rb_ima=YUVRead;
 image(rb_ima); %gives you a different picture for every new head position
 hold on;
 plot(88,66,'r.') %red dot at center of dog's view
 axis off;
else
 elevation = xval(cr)
 %effector([qangle 0 0 0]');
 %calculating delta, actual horizontal turning angle required
 delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 -
(hyp*sin(elevation))^2));
 if thetadeg > 0
 xd = -cos(delta)*hyp;
 else
 xd = cos(delta)*hyp;
 end
 yd = sin(delta)*hyp;
 zd = tan(elevation)*hyp;
 Pointhead([xd yd zd])
 pause(1)
 k=figure(2);
 rb_ima=YUVRead;
 image(rb_ima); %gives you a different picture for every new head position
 hold on;
 plot(88,66,'r.') %red dot at center of dog's view
 axis off;
end
end
pause(2.5)
end

148

Appendix B: Standard Deviation of Errors of Delta (azimuth) and Phi (elevation)
(azimuthal angles are the first row)

δ
Standard Deviation of Errors of Delta at -0.6 radians elevation

-45 -30 -15 0 15 30 45
1.9404 3.5187 0.19015 0.20193 6.4555 6.8373 8.5096

Standard Deviation of Errors of Delta at -0.3 radians elevation

-75 -45 -30 -15 -5 0 5 15 30 45 75
15 0.46391 20.698 14.897 0.08409 0.16593 16.616 16.166 13.329 11.272 15

Standard Deviation of Errors of Delta at 0 radians elevation

-90 -45 -30 -15 -5 0 5 15 30 45 90
25.804 0.806 24.928 0.30239 0.24028 0.39559 0.322 0.38098 17.904 0.91274 3.5024

Standard Deviation of Errors of Delta at 0.3 radians elevation

-75 -45 -30 -15 -5 0 5 15 30 45 75
3.5842 0.40616 0.34686 0.12882 0.11271 0.17792 0.28313 0.1042 2.1068 0.96298 3.5842

Standard Deviation of Errors of Delta at 0.6 radians elevation

-45 -30 -15 0 15 30 45
16.406 1.1356 0.46876 0.10966 0.39 1.0335 2.1171

φ
Standard Deviation of Errors of Phi at -0.6 radians elevation

-45 -30 -15 0 15 30 45
0 0.06 0.24875 0.065955 0.21599 0.071414 0.073485

Standard Deviation of Errors of Phi at -0.3 radians elevation

-75 -45 -30 -15 -5 0 5 15 30 45 75
0.15 0.03 0.25807 0.21 0.03 0.043301 0.21 0.13191 0.21442 0 0.15

Standard Deviation of Errors of Phi at 0 radians elevation

-90 -45 -30 -15 -5 0 5 15 30 45 90
0.11874 0.03 0.42927 0.06 0.03 0.061237 0 0 0.27699 0 0.065383

Standard Deviation of Errors of Phi at 0.3 radians elevation

-75 -45 -30 -15 -5 0 5 15 30 45 75
0.44396 0 0.041533 0 0.056125 0.056125 0.065383 0 0.094074 0 0.44396

Standard Deviation of Errors of Phi at 0.6 radians elevation

-45 -30 -15 0 15 30 45
0.63273 0.083066 0.03 0 0 0.09 0.09

149

