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ABSTRACT 
 

Acoustic localization is an important process used by humans and many animals.  
Bringing this sense to an artificial system has many possible applications.  The system 
explored here is the commercially available Sony Aibo ERS-210 robot dog.  The primary 
goal is to use this robot dog to track white noise sources in the forward hemisphere.  
Physically modifying the original equipment allowed for better tracking of such sounds in 
the vertical direction; prior to this modification, there was very little variation in the 
spectrum of the recorded sound as a function of elevation.  Templates of spectra at 
different elevations combined with the time delay between ears allowed for varied 
accuracies.  The lowest standard deviation of errors occurred at a position directly in 
front of the robot dog, while the greatest errors were at the periphery of its sight.  The 
range of standard deviation of errors for phi and delta in the forward hemisphere are as 
follows:  lowest standard deviation of error in Delta occurred at 15 degrees azimuth and 
0.3 radians elevation or (15, 0.3): 0.1042; highest standard deviation of error in Delta at        
(-90, 0): 25.804; there was never any error in Phi at these locations: (-45, -0.6), (45, -0.3),          
(5 & 15 & 45, 0), (-45 & -15 & 15 & 45, 0.3), (0 & 15, 0.6). 
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1.  INTRODUCTION 
 

The sense of hearing is an integral part of the human experience.  Audition allows us 
to communicate with others, navigate the world around us, and perceive and avoid 
dangers.  The spatial component of hearing is crucial for these uses whether to center in 
on the voice of a speaker, or to steer through traffic.  Several main characteristics of a 
sound act as cues for localization.  Given the right circumstances, (eg. frequency 
spectrum, position) humans can detect a shift of approximately 1˚. [1] Translating the 
human auditory process to an artificial system poses an interesting challenge in addition 
to offering numerous significant applications.   

 
This experiment reported in this paper evaluated the suitability of a robot dog for use 

as an acoustic localizer to a white noise sound source.  The Aibo communicated with a 
PC via a wireless Ethernet connection and all calculations were performed in Matlab. 
 
2. BACKGROUND 
 
2.1 Human Localization of Pure Tones – Two Cues for Localization 
 

The localization of steady pure tones is very unnatural for humans, as sinusoidal 
sounds do not occur in nature.  However, it is instructive to examine this process since 
the same methods apply to more complex sources.  Figure 1 shows the three-dimensional 
space surrounding a subject’s head, mapped onto a sphere.  Thus, direction of any sound 
source relative to the listener can be specified by its azimuth and elevation. 
  

Figu
re 1:  The spherical coordinate system about a human subject. [1] 
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 The speed of sound is finite; a listener’s two ears are spatially separated.  Thus, 
any sound originating from a location that is not on the median plane will reach the two 
ears at different times.  This acoustic cue is known as the interaural time difference 
(ITD).  Additionally, if the sound comes from the left or the right, the head will diffract 
the sound at low frequencies and act as an attenuator at higher frequencies.  This results 
in a second cue, the interaural intensity difference (IID).  [1, 2, 3]  This cue is nearly 
ineffectual below frequencies of approximately 500 Hz, though the difference may be as 
large as 20 dB at high frequencies.  [1] 
 
 At lower frequencies, greater emphasis is placed on the ITD. [2, 3] In this 
instance, the time difference is manifested as a phase difference and is readily 
quantifiable.  However, for a constant tone, changes in the ITD at frequencies above 1500 
Hz are nearly undetectable; because the period of the signal is so short, phase shifts are 
essentially irrelevant. 
 
 The greatest precision of aural localization of pure tones occurs when the sound 
originates from straight ahead (zero degrees azimuth and elevation).  [3] This is 
illustrated in Figure 2. 

 
Figure 2:  Localization precision decreases as the source moves away from the point 
directly ahead. [1] 
 
 
2.2 Human Localization of Complex Sound Sources – A Third Cue 
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Complex sound sources are abundant in nature.  They differ from steady pure tones in 

that they have onsets and offsets, as well as an amalgamation of many different 
frequencies.  The additional characteristic of a sound helps in classifying its source 
direction is the shape of its frequency spectrum; by definition this applies only to 
complex sounds.  This cue is known as the spectral cue, or the head-related transfer 
functions (HRTF). [1, 2] 

 
Spectral cues allow for mapping of sounds in the vertical plane.  The spectra of 

various sounds change with the elevation of the source as a result of various physical 
parameters.  These may include the size and shape of the torso and shoulders, and most 
critically, of the outer ear or pinna.  The changes in the magnitude of certain frequencies 
of the source spectrum are due to the reflections’ cancellations and reinforcements given 
the shape of the human appendages.  The frequency range that contains the most 
pertinent data (changes due to changes in source positioning) is approximately 5-18 kHz.  
[3] 
 
 
3. SONY AIBO ROBOT DOGS 
 

The goal of this project was to bring aural localization to 
an artificial system, in this case the commercially available 
Sony Aibo ERS-210A.  The Aibo robot dog is equipped with 
two sets of internal microphones that can be set to 
“unidirectional” or “omnidirectional” mode in software. [4] 
For the purposes of this project, the microphones were left on 
omnidirectional mode.  In addition, an important feature is the 
CMOS image sensor installed at the front of the head.  This 
camera was important for standardizing placement of the 
speaker, as the head can be set to turn in precise directions.  
Figure 3 shows a typical Aibo robot dog. 

 
Figure 3: A Sony Aibo ERS-210 robot dog. 

 
 It was necessary to modify the original microphone configuration of the robot dog 
in order to obtain more usable data.  Figure 4 illustrates this alteration.  It is further 
explained in section 6. 
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Figure 4: The modified Sony Aibo robot dog.  The microphones have been placed inside 
the “ears,” which now point downward. 
  
4. THEORY AND METHODS 
 
4.1 Cues 

 
 The two cues utilized for localization with the Sony Aibo are the ITD and the 
Spectral Cue.  The ITD was chosen over the IID because of its greater accuracy.  The 
sound source chosen contains information at all frequencies (white noise), which allows 
more flexibility regarding choosing cues. 
 
 The ITD alone provides enough information to map out an infinite cone about the 
axis formed by the two microphones.  The surface of this cone contains the set of all 
possible source locations given a particular ITD.  This is commonly known as the “Cone 
of Confusion,” and is illustrated in Figure 5. 
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Figure 5: The Cone of Confusion. 
 
The formula for the angle of incidence α (from the cone to the axis) is calculated given 
geometric constraints: 
 

( )
fd
cn  

d
ct  sin ==α ,    (1) 

 
where c is the speed of sound, t is the time delay in seconds, n is the time delay in 
samples, f is the sampling frequency, and d is the distance between the microphones. [2] 
 

If the angle of elevation is also known, the set of possible source locations is reduced 
to two rays that lie on the cone.  This theoretical ambiguity of two directions is explained 
by the horizontal symmetry of the head; one ray points onto the forward hemisphere 
while the other is a reflection onto the rear hemisphere.  [1, 2]  The solution pointing 
backward is considered extraneous in this experiment, as source locations are restricted to 
the forward hemisphere. 
 
4.2 Calculations 
 
4.2.1 Time Delay 
 

The process to calculate the time difference between the two acquired samples occurs 
in the frequency domain.  Although this may initially seem counterintuitive, the results 
are much more accurate than those obtained by matching the two time-domain samples.  
Often there is some degree of distortion from one channel to the other due to the head, 
thereby rendering direct comparison very difficult.  In addition, work in the time domain 
is limited by the sampling frequency.  In the case of the Aibo robot dog, the maximum 
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audio sampling frequency is 16,000 Hz.  [4] Given that the distance between the two sets 
of microphones is approximately 5cm, the number of samples corresponding to different 
time delays at different points on the sphere therefore has a range of about 10 points.  
This range corresponds to a maximum accuracy of 18˚ along the horizontal plane which 
is inaccurate at best. 

 
A more refined approach uses a cross-correlation algorithm based in the frequency 

domain.  A time delay translates to the following linear phase shift in the frequency 
domain [5]: 
 

( ) ( ) dt*f-j2efM  dt-tm π•=>     (2) 
 
Therefore, maximizing the cross-correlation function between two complex functions Xl 
and Xr by varying the value of the time shift dt, it is possible to obtain a much more 
precise angle of incidence [6]: 
 

( )[ ]fdtj
rl eXconjXdt π2*max −•=     (3) 

 
Thus, the correct value of dt is obtained when the above argument in equation 3 is 
maximized.  This applied in conjunction with equation 1 provides the angle of incidence 
for the Cone of Confusion. 
 
4.2.2 Elevation 
 

The calculation of the elevation relies solely on information obtained from spectral 
cues.  The HRTF contains spectral information and is a function of source position 
(azimuth, elevation, distance).  A transfer function is given by the following: 
 

)(
)()( ,

, fS
fXfH φθ

φθ = ,    (4) 

 
where X(f) is the recorded spectrum at a given location and S(f) is the source spectrum.  
The recorded and source spectra are calculated by taking the Discrete Fourier Transform 
of the respective time-domain signals.  Figure 6 illustrates an averaged HRTF at various 
elevations and zero degrees azimuth. 
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Figure 6: HRTF (frequency in Hz vs. magnitude) at five different elevations, zero 
degrees azimuth.   Note that because of the Nyquist Rate, the frequency range of acquired 
data is limited at 8 kHz. [8] 
 
 The numerous sharp spikes and dips are problematic for a simple template 
matching algorithm, though matching a new transfer function with known templates that 
represent different locations is the simplest method available.  The most relevant features 
of the transfer functions are the wide troughs and peaks.  To isolate these data, the 
Discrete Fourier Transform is applied to the absolute value of the log of the transfer 
functions.  Speech analysts refer to this strategy as Cepstral Data Analysis. [7] 
 

Cepstral Data = fft(log(abs(TF)))     (7) 
 
 In order to ensure accuracy, numerous samples of several different white noise 
sources are taken at chosen elevations and azimuths.  Each sample is then processed into 
complex Cepstral Data.  Figure 7 shows the Cepstral Coefficients for one particular 
white noise source at a source direction straight ahead (zero azimuth and elevation). 
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Figure 7: First 15 Cepstral Coefficients at a given source location ( 250 samples). 
 
These values are then averaged together to form one template for this position: 

Figure 8: Mean of Cepstral Coefficients at a given source location. 
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 It is not by accident that only the first 15 coefficients are displayed.  In fact, the 
very first coefficient has been omitted.  The 0th coefficient signifies the D.C. offset of the 
transfer function and thus can only introduce error.  The higher coefficients are ignored 
as they represent the amount of successively higher frequency components present in the 
transfer function shape.  These 30 numbers (15 real, 15 imaginary) are sufficient to 
represent the overall shape of the transfer function. 
 
 For each position in space (azimuth, elevation), there are four sources and thus 
eight templates total (four for the left, four for the right).  Three azimuths were chosen:    
–45, 0 and +45 degrees.  Sixteen elevations were sampled at 0 degrees, and 13 for both 
±45˚. In the final verification of position program, verify5.m (see Appendix A), the same 
process outlined above is repeated for a single acquired sample.  The first 15 complex 
Cepstral Coefficients (not counting the D.C. offset) are then compared to the first 15 
Cepstral Coefficients on all of the templates.  The minimum of the sum of errors between 
the new sample and the templates is then found.  The following figure shows a typical 
graph of errors at different elevations for a single acquired sample: 

 
 
Figure 9: Sum of errors between acquired Cepstral Data and Cepstral Templates at 
various elevations.  Note that the absolute minimum occurred in source 3 (dark green 
line) on from the right differences at 0.45 radians elevations. 
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5. RESULTS 
 

Figure 10 shows the standard deviation of errors in the expected vs. measured delta 
(azimuth) and phi (elevation) at multiple positions along the horizontal plane, zero 
radians elevation.  As expected, the angles nearest the center (zero degrees azimuth) 
represent the area with least error. 

 
Figure 10: A measure of the error of azimuth (delta) and elevation (phi) at various points 
at 0 radians elevation. 

 
Figure 11: Standard deviation of errors of delta (azimuth) along various positions and 
five separate elevations ranging from –0.6 radians to 0.6 radians. 
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Figure 12: Standard deviation of errors of phi (elevation) at various positions in space 
along five chosen elevations ranging from –0.6 to 0.6 radians. 
 

Precise values of standard deviation of errors can be found in Appendix B. 
 
 

6. DISCUSSION AND CONCLUSIONS  
 

A number of non-idealities and limiting factors contribute to the imperfections in the 
system.  One major pitfall is the low sample rate, capped at 16 kHz.  Though this seems 
reasonable, the Nyquist Rate specifies that the spectrum can only accurately range up to 
half the sampling rate, or 8 kHz. [8] This is sufficient to provide enough variation in the 
transfer function to distinguish various elevations, but as stated earlier, most spectral 
information pertaining to physical parameters occurs within the range of 5-18 kHz. 

 
When the HRTF of the unmodified robot dog was first analyzed, it was found that 

there was insufficient variation in the transfer functions at different elevations to allow 
for positive matching against a template.  Thus the microphones were placed under the 
ears to act as an artificial pinna.  Given more time, different microphone positions could 
have been tried, and perhaps an outer ear could have been built around them to create 
more variations in the HRTF that depend on elevation.  Another interesting idea might be 
to have one ear pointing up and the other pointing down.  This asymmetry is used by 
certain animals in nature- [2] and might increase the confidence level of the result of a 
given elevation. 
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The greatest weakness of the final algorithm is that, in order to correct for position on 
the sphere, the accuracy of the angle of elevation is as crucial as the time delay.  The 
greater the error in either, the more skewed the calculated position.  This is most 
troublesome in the case of the elevation.  As is apparent from Figure 12, the error of phi 
is much greater in the lower elevations.  This is probably due to the fact that the robot 
dog’s ears are pointed down, so there is no diffraction of sound around the ear when the 
sound emanates from below.  The best solution may be to build a custom outer ear with 
folds and sharp corners in order to ensure marked variations in the HRTF at various 
elevations. 

 
Another significant issue is that there are only three sets of Cepstral templates at -45, 

0 and +45 degrees azimuth.  This is the main reason the errors for phi are so high at ±30 
degrees.  Adding more templates would solve this issue. 

 
Although a number of improvements can be made to this program, the robot dog is 

able to accurately localize a white noise sound source at most points in the front 
hemisphere.  Any additions to the project would be refinements to improve precision. 
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9.  APPENDICES 
 
Appendix A: Matlab Code 
 
%  verify5.m 
%  dog finds elevation of speaker 
 
close all; 
 
%  load templates for cepstral data at -45, 0 and 45 degrees azimuth 
load ceptemplate.mat; 
load ceptemplateN45.mat; 
load ceptemplateP45.mat; 
SetDefaultRobot(2); 
Effector(15); 
 
%  choose which white noise source to try to find. 
source = input('Chooses source; enter 1, 2, 3, or me: ','s'); 
if source == '1' 
    ss = load('C:\MATLAB6p5\work\ss.dat'); 
    ss1 = load('C:\MATLAB6p5\work\ss.dat'); 
end 
if source == '2' 
    ss = load('C:\MATLAB6p5\work\s1.dat'); 
    ss1 = load('C:\MATLAB6p5\work\s1.dat'); 
end 
if source == '3' 
    ss = load('C:\MATLAB6p5\work\s2.dat');  
    ss1 = load('C:\MATLAB6p5\work\s2.dat'); 
end 
if source == 'me' 
    ss = load('C:\MATLAB6p5\work\ssme.dat'); 
    ss1 = load('C:\MATLAB6p5\work\ssme.dat'); 
end 
 
ss1 = [ss1' zeros(1,1536)]'; 
ss1fft = fft(ss1); 
pause(1);     
 
%  shows you a picture of what the dog sees before proceeding 
incorrect = 'y'; 
while incorrect == 'y' 
    Effector([0 0 0 0]');   %prep dog position 
    pause(1); 
    h=figure(1); 
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    rb_ima=YUVRead; 
    image(rb_ima);              %gives you a different picture for every new head position 
    hold on; 
    plot(88,66,'r.')            %red dot at center of dog's view 
    axis off; 
    incorrect = input('readjust? (y/n): ','s'); 
    pause(1); 
end 
close all; 
 
% set infinite loop to keep finding speaker until interrupted by user 
while 1 
close all 
Effector([0 0 0 0]');         %set dog's head to standard position 
Effector([0 0]')              %make sure ears are down 
clear check; 
earstr = 'down'; 
pause(2); 
 
[y, userdata] = MicRead; 
Effector(15); 
micPort = 5002; 
xlave = 2; 
xrave = 2; 
% set while loop to catch white noise sound 
rdelta = 2000; 
ldelta = 2000; 
dt = 1; 
% keep taking data points until the onset of the sound source is within the 
% 2048 point-long recorded window.  Also make sure the time difference does 
% not exceed physical limitations to ensure that the data is reliable. 
 
while rdelta > 1535 | ldelta > 1535 | abs(ldelta - rdelta) > 10 | abs(dt) > 2.5e-4 
    close all; 
    xlave1 = 1000; 
    xlave2 = 0; 
    xrave1 = 0; 
    xrave2 = 0; 
    xlave = 1; 
    xrave = 1; 
    while xlave < 200 | xrave < 200 | xlave1 > 500 | xlave2 > 600 | xrave1 > 500 | xrave2 > 
600  %set loop to make sure sound is captured correctly 
        soundsc(ss,16000);          %play white noise, fs = 16000 
        pause(.0625);                %delay to give computer time to play noise 
        x = double(micread);        %dog acquires data from both microphones 
        subplot(2,2,1), plot(x(:,1)); 
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        axis([0 2048 -4000 4000]); 
        subplot(2,2,2), plot(x(:,2)); 
        axis([0 2048 -4000 4000]); 
        xlave = mean(abs(x(:,1)));  %these are the thresholds to make sure the sound is 
within the window 
        xrave = mean(abs(x(:,2))); 
        xlave1 = mean(abs(x(1:150,1))); 
        xlave2 = mean(abs(x(1900:2048,1))); 
        xrave1 = mean(abs(x(1:150,2))); 
        xrave2 = mean(abs(x(1900:2048,2))); 
    end 
    yl = x(:,1); 
    yr = x(:,2); 
    xlfft = fft(yl);  %take fourier transform of acquired time-data 
    xrfft = fft(yr); 
    Clf = xlfft.*conj(ss1fft);  %multiply by the complex conjugate of the source 
    Crf = xrfft.*conj(ss1fft); 
    clt = ifft(Clf);            %take the inverse fourier transform of the above product 
    crt = ifft(Crf); 
    lhighest = max(clt);        %determine number of shifted data points 
    rhighest = max(crt); 
    ldelta = find(clt==lhighest); 
    rdelta = find(crt==rhighest); 
    %use the program RefinedCC.m to get a much more accurate time delay (steps through 
small time differences in the freq domain) 
    [c,peakValue,dt]=RefinedCC(x(:,1),x(:,2),16000,(-10:10)/16000);   
    dt 
end 
 
%take the data we want (first 512 data points of recorded sound- removes echo) and shift 
back to 0 
for s = 0:511 
    shiftxl(s+1,1) = yl(ldelta + s,1); 
    shiftxr(s+1,1) = yr(rdelta + s,1); 
end     
shiftedxl = [shiftxl' zeros(1,1536)]'; 
shiftedxr = [shiftxr' zeros(1,1536)]'; 
close all; 
 
%acquired data processing here 
    xlfft = fft(shiftedxl); 
    xrfft = fft(shiftedxr); 
    xltf = xlfft(1:1024,1)./ss1fft(1:1024,1);   %get transfer function from just acquired 
sample 
    xrtf = xrfft(1:1024,1)./ss1fft(1:1024,1); 
    clear shiftedxl shiftedxr 
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    cepltf = fft(log(abs(xltf)));               %calculate cepstral data 
    ceprtf = fft(log(abs(xrtf))); 
    dt 
   
%converting dt to an angle 
    theta = -asin(dt*344/.085); 
    thetadeg = theta*180/pi 
    hyp = sqrt(1000^2+1000^2); 
  
%choose which template to compare 
if thetadeg < -20 %choose right template 
    thetashift = theta + pi/2; 
    dcepdifferencesN45;  % finds sum of square of differences of first derivative of all 
cepstral data 
    xval = [-1.2 : 0.15 : .60]; 
     
    subplot(2,1,1), plot(xval,[ldiffs(1,:); ldiffs(2,:)+50; ldiffs(3,:)+100; ldiffs(4,:)+150]); 
    title('Left side differences using all sources; N45-Template'); 
    subplot(2,1,2), plot(xval,[rdiffs(1,:); rdiffs(2,:)+50; rdiffs(3,:)+100; rdiffs(4,:)+150]); 
    title('Right side differences using all sources'); 
 
    [rl,cl] = find(ldiffs==min(min(ldiffs))); 
    [rr,cr] = find(rdiffs==min(min(rdiffs))); 
    figure; 
     
    %choose left or right side with lowest error value 
    if ldiffs(rl,cl) < rdiffs(rr,cr) 
        elevation = xval(cl) 
                %calculating delta, actual horizontal turning angle required 
                delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 - 
(hyp*sin(elevation))^2)); 
        xd = cos(delta)*hyp; 
        yd = sin(delta)*hyp; 
        zd = tan(elevation)*hyp; 
        %effector([qangle 0 0 0]'); 
        PointHead([xd yd zd]); 
        pause(1) 
        k=figure(2); 
        rb_ima=YUVRead; 
        image(rb_ima);              %gives you a different picture for every new head position 
        hold on; 
        plot(88,66,'r.')            %red dot at center of dog's view 
        axis off; 
    else 
        elevation = xval(cr) 
            %calculating delta, actual horizontal turning angle required 



145 

            delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 - 
(hyp*sin(elevation))^2)); 
        xd = cos(delta)*hyp; 
        yd = sin(delta)*hyp; 
        zd = tan(elevation)*hyp; 
        %effector([qangle 0 0 0]'); 
        PointHead([xd yd zd]); 
        pause(1) 
        k=figure(2); 
        rb_ima=YUVRead; 
        image(rb_ima);              %gives you a different picture for every new head position 
        hold on; 
        plot(88,66,'r.')            %red dot at center of dog's view 
        axis off; 
    end     
end 
 
if thetadeg > 20 %choose left template 
    thetashift = abs(theta - pi/2); 
    dcepdifferencesP45;  % finds sum of square of differences of first derivative of all 
cepstral data 
    xval = [-1.2 : 0.15 : .60]; 
     
    subplot(2,1,1), plot(xval,[ldiffs(1,:); ldiffs(2,:)+50; ldiffs(3,:)+100; ldiffs(4,:)+150]); 
    title('Left side differences using all sources; P45-Template'); 
    subplot(2,1,2), plot(xval,[rdiffs(1,:); rdiffs(2,:)+50; rdiffs(3,:)+100; rdiffs(4,:)+150]); 
    title('Right side differences using all sources'); 
     
    [rl,cl] = find(ldiffs==min(min(ldiffs))); 
    [rr,cr] = find(rdiffs==min(min(rdiffs))); 
    figure; 
    %choose left or right side with lowest error value 
    if ldiffs(rl,cl) < rdiffs(rr,cr) 
        elevation = xval(cl) 
            %calculating delta, actual horizontal turning angle required 
            delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 - 
(hyp*sin(elevation))^2)); 
        xd = -cos(delta)*hyp; 
        yd = sin(delta)*hyp; 
        zd = tan(elevation)*hyp; 
        %effector([qangle 0 0 0]'); 
        PointHead([xd yd zd]); 
        pause(1) 
        k=figure(2); 
        rb_ima=YUVRead; 
        image(rb_ima);              %gives you a different picture for every new head position 
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        hold on; 
        plot(88,66,'r.')            %red dot at center of dog's view 
        axis off; 
    else 
        elevation = xval(cr) 
            %calculating delta, actual horizontal turning angle required 
            delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 - 
(hyp*sin(elevation))^2)); 
        xd = -cos(delta)*hyp; 
        yd = sin(delta)*hyp; 
        zd = tan(elevation)*hyp; 
        %effector([qangle 0 0 0]'); 
        PointHead([xd yd zd]); 
        pause(1) 
        k=figure(2); 
        rb_ima=YUVRead; 
        image(rb_ima);              %gives you a different picture for every new head position 
        hold on; 
        plot(88,66,'r.')            %red dot at center of dog's view 
        axis off; 
    end 
end 
 
if abs(thetadeg) < 20 %choose center template 
    if thetadeg < 0 
        thetashift = theta + pi/2; 
    else 
        thetashift = abs(theta - pi/2); 
    end 
 
%  sums the derivatives of differences  
dcepdifferences;  % finds sum of square of differences of first derivative of all cepstral 
data 
 
figure 
xval = [-1.5:0.15:0.75]; 
subplot(2,1,1), plot(xval,[ldiffs(1,:); ldiffs(2,:)+50; ldiffs(3,:)+100; ldiffs(4,:)+150]); 
title('Left side differences using all sources'); 
subplot(2,1,2), plot(xval,[rdiffs(1,:); rdiffs(2,:)+50; rdiffs(3,:)+100; rdiffs(4,:)+150]); 
title('Right side differences using all sources'); 
 
[rl,cl] = find(ldiffs==min(min(ldiffs))); 
[rr,cr] = find(rdiffs==min(min(rdiffs))); 
figure; 
%choose left or right side with lowest error value 
if ldiffs(rl,cl) < rdiffs(rr,cr) 
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    elevation = xval(cl) 
    %effector([qangle 0 0 0]'); 
            %calculating delta, actual horizontal turning angle required 
            delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 - 
(hyp*sin(elevation))^2)); 
    if thetadeg > 0 
        xd = -cos(delta)*hyp; 
    else 
        xd = cos(delta)*hyp; 
    end 
    yd = sin(delta)*hyp; 
    zd = tan(elevation)*hyp; 
    Pointhead([xd yd zd]) 
    pause(1) 
    k=figure(2); 
    rb_ima=YUVRead; 
    image(rb_ima);              %gives you a different picture for every new head position 
    hold on; 
    plot(88,66,'r.')            %red dot at center of dog's view 
    axis off; 
else 
    elevation = xval(cr) 
    %effector([qangle 0 0 0]'); 
            %calculating delta, actual horizontal turning angle required 
            delta = asin(sqrt((hyp*sin(thetashift))^2 - (hyp*sin(elevation))^2) / sqrt(hyp^2 - 
(hyp*sin(elevation))^2)); 
    if thetadeg > 0 
        xd = -cos(delta)*hyp; 
    else 
        xd = cos(delta)*hyp; 
    end 
    yd = sin(delta)*hyp; 
    zd = tan(elevation)*hyp; 
    Pointhead([xd yd zd]) 
    pause(1) 
    k=figure(2); 
    rb_ima=YUVRead; 
    image(rb_ima);              %gives you a different picture for every new head position 
    hold on; 
    plot(88,66,'r.')            %red dot at center of dog's view 
    axis off; 
end 
end 
pause(2.5) 
end 
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Appendix B: Standard Deviation of Errors of Delta (azimuth) and Phi (elevation) 
(azimuthal angles are the first row) 
 

δ 
Standard Deviation of Errors of Delta at -0.6 radians elevation 

-45 -30 -15 0 15 30 45 
1.9404 3.5187 0.19015 0.20193 6.4555 6.8373 8.5096 

 
Standard Deviation of Errors of Delta at -0.3 radians elevation 

-75 -45 -30 -15 -5 0 5 15 30 45 75 
15 0.46391 20.698 14.897 0.08409 0.16593 16.616 16.166 13.329 11.272 15 

 
Standard Deviation of Errors of Delta at 0 radians elevation 

-90 -45 -30 -15 -5 0 5 15 30 45 90 
25.804 0.806 24.928 0.30239 0.24028 0.39559 0.322 0.38098 17.904 0.91274 3.5024 

 
Standard Deviation of Errors of Delta at 0.3 radians elevation 

-75 -45 -30 -15 -5 0 5 15 30 45 75 
3.5842 0.40616 0.34686 0.12882 0.11271 0.17792 0.28313 0.1042 2.1068 0.96298 3.5842 

 
Standard Deviation of Errors of Delta at 0.6 radians elevation 

-45 -30 -15 0 15 30 45 
16.406 1.1356 0.46876 0.10966 0.39 1.0335 2.1171 

 

 
φ 
Standard Deviation of Errors of Phi at -0.6 radians elevation 

-45 -30 -15 0 15 30 45 
0 0.06 0.24875 0.065955 0.21599 0.071414 0.073485 

 
Standard Deviation of Errors of Phi at -0.3 radians elevation 

-75 -45 -30 -15 -5 0 5 15 30 45 75 
0.15 0.03 0.25807 0.21 0.03 0.043301 0.21 0.13191 0.21442 0 0.15 

 
Standard Deviation of Errors of Phi at 0 radians elevation 

-90 -45 -30 -15 -5 0 5 15 30 45 90 
0.11874 0.03 0.42927 0.06 0.03 0.061237 0 0 0.27699 0 0.065383 

 
Standard Deviation of Errors of Phi at 0.3 radians elevation 

-75 -45 -30 -15 -5 0 5 15 30 45 75 
0.44396 0 0.041533 0 0.056125 0.056125 0.065383 0 0.094074 0 0.44396 

 
Standard Deviation of Errors of Phi at 0.6 radians elevation 

-45 -30 -15 0 15 30 45 
0.63273 0.083066 0.03 0 0 0.09 0.09 
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