Dielectrophoretic Assembly, Integration, and Characterization of Nanostructures

Vinayak Deshpande Nicole DiLello Dr. Stephane Evoy NEMS Laboratory

Presentation Outline

- Introduction to MEMS / Project Overview
- Wafer Design / Fabrication
- Experimental Setup / Assembly Parameters
- Results (Electrical Characterization)
- Conclusion / Future Outlook

Introduction to MEMS

MEMS (Micro-Electro-Mechanical Systems):

- Integrate sensing capabilities with processing power
- Manufactured using durable, reliable, and cost effective IC techniques
- Examples
 - Inkjet Print-Heads, Airbag Accelerometers, Drug Delivery Systems

MEMS with Nanotechnology

- Sensing aspect can be greatly enhanced by nanowires
 - Smaller
 - Highly Sensitive
- Examples
 - Resistivity of Nanowire Related to Atmospheric Conditions

Project Overview

- Goal:
 - Assemble, Integrate, and Characterize Nanowires

- Relevance
 - Proof of Concept
 - Observations / Data for more complex NEMS devices

Wafer Fabrication

Thermal Oxidation Heat Silicon Wafer to grow SiO₂

Sputter Deposition Vaporization / Condensation

Mask Production / Photolithography

Masks / Photolithography UV light

Characterization and Discussion of Different Nanostructures

- Assembled on varying gap sizes
- Successfully assembled 3 different structures
 - GaAs nanowires
 - Rh nanowires
 - Multi-walled carbon nanotubes (MWNTs)
- Data gathered varies due to size limitations

GaAs nanowires

- Successfully assembled on chips with gap size of 1-3 µm
- Optimal conditions for assembly
 - $-V_{pp} = 10 V$
 - Frequency = 100
 kHz
 - -t = 60 s

 $Gap \ size = 1.5 \ \mu m$

Testing of GaAs nanowires

- Could not measure electrically
 - Could not probe existing chips from the outside world
 - A final mask layer was designed to make tests possible
 - Photolithography tools did not have small enough resolution to align this final layer
 - Mask may be sent elsewhere with chip to perform final layer of processing

Rh nanowires

- Optimal conditions for assembly
- 1-3 µm
 - $V_{pp} = 15 V$ freq = 100 kHz t = 5 min
- 5-30 µm
 - $V_{pp} = 35 V$ freq = 100 kHz <u>t = 5 min</u>

Assembled Rh nanowire

Current vs. Voltage for Rh rods (Room Temperature)

Current (mA)

Multi-walled Carbon nanotubes

- Optimal conditions for assembly on 5-30 µm gap size
 - $-V_{pp} = 35 V$
 - freq = 100 kHz
 - -t = 5 min
- Most successful in gathering data on MWNTs

MWNT assembled on a 6 µm gap

Current vs. Voltage for MWNTs at Various Temperatures

Current (µA)

MWNT Discussion

 Possible explanations for jump between 125°C and 135°C:

A MWNT

- A critical temperature was reached
- Physical structure of the tubes was permanently changed
- Supported by the fact that this data was not reversible
- May actually be measuring contact resistance between MWNT and electrode

Mechanical Characterization

- GaAs nanowires need to first be clamped – need more precise photolithography tools
- Rh nanowires can be clamped, but haven't yet
- MWNTs have been successfully clamped. Tests should be done within a few weeks

Conclusions

- Large pads on the chip create strong capacitive forces
- There is an inverse relationship between temperature and resistance
- There may exist a critical temperature that permanently changes MWNTs

Must be careful when heating MWNTs because they will break

Future Work

- Test other types of nanostructures mechanically and electrically
- Can combine them in an array to act as sensors (of temperature, etc.)
- Applications in everything from medicine (bio-sensors) to electronics (FETs)

Questions