
 21

Technical Report TR-CST17OCT03

University of Pennsylvania
Center for Sensor Technology

Philadelphia, PA 19104

SUNFEST REU Program

SONY AIBO MOTION CALIBRATION AND
MONITORING/CONTROL SYSTEM

NSF Summer Undergraduate Fellowship in Sensor Technologies

Microsoft Fellowship Recipient
Brian Corwin (Computer and Telecommunications Engineering) – University of

Pennsylvania
Advisor: Dr. Daniel Lee

ABSTRACT

The Sony Aibo are robotic dogs used to test new ideas in artificial intelligence,
computer vision, and robotic motion through the application of having the dogs play
soccer. An important part of building the system the dogs use is debugging. There are
two key parts to this process: calibrating the dog’s motions, and monitoring the dog’s
sensory outputs and control input. Both parts of the process help the developer to
understand how the dog perceives the world and acts in it. Each of these questions was
addressed with a different system. A magnetic positional sensor device was used (along
with dog control and data processing programs) to obtain calibration information about
the dog’s various walks and kicks. A client/server system was developed to allow
multiple users to access different sensory outputs, the dog’s command input (only one
user at a time), and the dog’s standard output in order to facilitate system development
and debugging.

 22

Table of Contents

1. Introduction 23
2. Background 23

2.1 Sony Aibo and Robocup Soccer 23
2.2 Aibo Software 24
2.3 Important Aibo Inputs/Outputs 24
2.4 Aibo Vision System 25
2.5 Nest of Birds (NOB) Design, Operating System and API 25

3. Aibo Motion Calibration System 26
3.1 Nest of Birds Control Program 27
3.2 Aibo Motion Calibration Matlab Scripts 27
3.3 Motion Calibration Results 28

4. Dog Control and Monitoring System: Server 30
4.1 Purpose and Basic Design 30
4.2 General Server Libraries 30
4.3 General Server Functions and Control Flow 31
4.4 Server Specific Details 33

4.4.1 Input/Output Servers 33
4.4.2 Blob Server 33
4.4.3 Camera Server 33

5. Dog Control and Monitoring System: Client 34
5.1 Client Basic Design 34
5.2 Remote Control Client 35

6. Discussions and Conclusions 36
7. Future Work and Recommendations 37
8. Acknowledgements 37
9. References 38
10. Appendix A: Calibration Graphs 39
11. Appendix B: Client Program Screen Shots 40

 23

1. INTRODUCTION

The Sony Aibos, like any intelligent agent, interact with the world through a
sequence of perception, evaluation, and action. In this project, the Aibo’s actions were
calibrated, and a system to monitor the Aibo’s perceptions (and also control its actions
directly) was created. Calibrating motions determines how commanded motions (and
their expected results) compare with the actual motions performed. Information about
this can be used to adjust the system, so the dogs’ expected actuations are carried out as
accurately as possible. Controlling the dog (or letting the dog control itself) while
monitoring its different sensory and system outputs is an important step in understanding
and debugging the dog’s sensor, information processing, and self-control systems. In
other words, in order to understand what the dog is doing, one must “see” the world as
the dog does by viewing its sensory outputs. A system using a sensor device (for precise
positional information), associated program, and calibration scripts was used for motion
calibration, and a client/server program was created to allow for dog control and
observation of dog outputs by multiple users at once. In the future, it is hoped, these
systems will be integrated to give the developer more tools.

 This paper outlines the design of these two systems as well as the results from two
iterations of motion calibration. Section 2 provides background on the hardware and
operating system of the Aibo, the software systems developed by Dr. Daniel Lee for the
Aibo to use for soccer, and the principles, hardware, and operating system for the Nest of
Birds (NOB) sensor device used in the motion calibration. Section 3 discusses the
creation of a control program for the NOB as well as calibration scripts. The section also
covers the results of some of the motion calibrations done for the dogs. Section 4 covers
the design, implementation, and use of the monitoring and control server for the Aibo.
Section 5 covers the design and use of the first prototype client created to interact with
the server. Discussion and conclusions are presented in Section 6 and future work and
recommendations in Section 7.

2. BACKGROUND

2.1 Sony Aibo and Robocup Soccer

The Sony Aibo (see Figure 1) is a robotic
dog used by universities for research, particularly
to participate in Robocup Soccer. This is an
event sponsored by the Robocup Federation in
which robots of different types (including the
Sony Aibo) play soccer; in the Aibo case the
game is played with teams of four [1, pp. 1-4].
All perception, decision, and actuation activities
are performed by the Aibos themselves, although
communication and coordination is allowed
(with strict rules) between dogs through a
wireless network [1, pp. 1-4].

Figure1: The Sony Aibo.

 24

These tournaments create an activity through which new ideas about computer

vision, robotic motion, and artificial intelligence are developed and tested. After the
annual tournament, each team writes a report describing their system, so that groups learn
from one another and advance scientific development.

 The Sony Aibos are themselves a powerful platform on which to work. Each dog
has four legs, each with a motor in the hip, knee, and ankle that allow for three degrees of
freedom in each leg [2, pp. 7-12]. The dog’s head and neck has three motors that give it
three degrees of freedom (pan, tilt, and roll) [2, pp. 6-12]. A camera in the dog’s head
has a focal length of 161 pixels (2.18 mm), operates at 25 frames per second, and takes
images that are 352 x 288 pixels in size [2, p. 20]. The Aibo also has a short-range
distance sensor, two-channel microphone, and speaker [2, pp. 19-21]. Each dog also has
a slot for an IEEE 802.11 wireless Ethernet card. The Aibo operating system also has a
built in Application Programming Interface (API) using Sony’s OPEN-R technology.
The technology allows custom programs to be written that operate the dog [3], running
off memory sticks inserted into a slot on the dog. A TCP/IP networking stack allows the
Aibo to communicate with other Aibos and computers over a wireless Ethernet [4].

2.2 Aibo Software

Dr. Daniel Lee and colleagues have created an extensive software system that
runs the Aibo team. At the lowest level, code written in C++ interacts directly with the
Aibo’s API to handle some of the basic functionalities of the dog, such as its vision
system. On top of this is the core high-level decision-making program consisting of a
state machine [5, p. 1]. Previously this layer was implemented in C/C++, but a more
flexible solution was found in running a PERL script on a PERL interpreter embedded in
the Aibo [5, p. 1]. PERL had several advantages including the ability to recover from
errors, ease of development, and extensibility that allowed the low-level C++
functionalities to be called through a limited interface, allowing for maximum
implementation encapsulation [5, p. 2].

2.3 Important Aibo Inputs/Outputs

Although the Aibos perform autonomously during competition, the system in
Section 2.2 does have inputs and outputs to which other computers can connect, assisting
in debugging and development (communication with the Aibo is described in Section
2.1). The system connects specific outputs and inputs to different ports in the dog’s
networking stack; for example, port 59000 is the standard output for the dog (where
system information and error messages are shown), so if another computer connects to a
dog’s IP address on port 59000 it can retrieve these messages. In addition, 1001 is the
input port, 6006 is the “blob vision” port (see Section 2.4), and 6000 is the camera port.
A special format for the packets sent to these ports is specified by the OPEN-R protocol.
Each packet has a total size (integer) value telling the total number of bytes in the packet
and a number of data (integer) value that is the number of data elements in the packet, in
addition to the data itself. For the input, the data is a string that represents a command to

 25

be executed by the dog. This takes advantage of a useful feature of PERL: Since PERL is
interpreted commands can be executed on the fly [5, p. 2].

2.4 Aibo Vision System

Each image from the camera comes out in YUV pixel format. Existing computer
vision systems cannot deal with the complexity of even the simplest photograph, so in
order for the Aibo to extract relevant information from the images, the photos must be
simplified into a form that the Aibo’s processing power and known computer vision
techniques can handle. The simplification system is based on the needs of the Robocup
soccer field; on the field important visual cues for the dog are distinct colors (the ball is
bright orange, the goals are yellow and blue, etc.). The distinct colors give the dogs
specific visual cues to look for; i.e., they only need to recognize this particular subset of
visual stimuli.

Each pixel of the image is

mapped to one of the important cue
colors (orange, blue, green, etc.) or to
nothing, in a method similar to that used
by Carnegie Mellon University’s Aibo
team [6, p. 2]. In essence, every pixel
that is close to green is mapped to green,
every pixel that is close to orange is
mapped to orange, etc. and everything
else is ignored. Although the number of
colors has been limited there are still
thousands of individual pixels. The
image is processed again, so that an area
with a large concentration of a particular
color pixel is united into one box.

Figure 2: Blob view image.

Each box (which is also called a “blob”) has certain characteristics: the position of

each corner and of the centroid (the center of mass of the pixels). After processing, the
image becomes an array of bounding box structures that stores the information on all
“blobs” in the image. This is simple enough for the dog to process; for example, in order
to find the ball the Aibo simply looks for an orange blob. Figure 2 shows a blob view
image.

2.5 Nest of Birds (NOB) Design, Operating System, and API

 The NOB (see Figure 3) is a magnetic sensor device with a central unit, a
transmitter, and four sensors. The sensors and transmitters are attached to the central unit
by cables. The device is connected to a computer via a serial port in its central unit. The
NOB works by magnetic field emission and electromagnetic induction. The transmitter
and the sensors all have electrical coils in the x, y, and z directions [7, pp. 2-3]. The

 26

transmitter turns on each coil one at a time,
and the magnetic field emitted by the coils
induces an electric current in the coils of the
sensors [7, pp. 3-4]. The amount of
induction in each coil is inversely
proportional to the distance to the
transmitter and orthogonality of the angle of
the coil to the field. Thus by comparing the
induced voltages in each sensor coil (x, y,
and z) when each of the transmitter coils (x,
y, and z) is on, the device can tell the
relative position (x, y, and z) of the sensor to
the transmitter and the azimuth, elevation,
and roll of the sensor relative in the
coordinate system of the transmitter. The
NOB has a range of 3 feet from the
transmitter [8, p. 8].

Figure 3: Nest of Birds device

The API of the NOB consists mainly of commands represented by single-byte

positive integers. Sending a certain byte to the NOB via the serial port tells the NOB to
perform a particular action; for example, writing number 66 asks for a data point from a
sensor [8, p. 88]. Many functions in API are superfluous to the simple system needed for
motion calibration; so only key features will be discussed.

The NOB has certain parameters that help control its actions (all can be examined
and some can be changed): the error status of each bird, the address of the transmitter,
etc. The examine/change functions are used to manipulate these parameters, and thus
control the actions of the NOB [8]. In this way, for example, the transmitter mode, bird
hemisphere (direction of the coordinate system of the sensor), and bird data mode are all
set. Each bird (sensor) has an address; these addresses are from 1 to the number of birds
in the device (here, 4). The status of each bird can also be obtained, which will tell much
about its state: is it master or slave, running or not, error or none, etc. The auto-
configuration function tells a bird to be the master bird, through which all
communications to other birds must go, and how many birds there will be. Without the
auto-configuration, only one bird can be used at a time [8, pp. 131-134].

3. AIBO MOTION CALIBRATION SYSTEM

The motion calibration system was designed around the NOB magnetic sensor
device in two parts. First, a C++ program was designed to initiate and configure the
NOB and to obtain data from the device when asked. Second, Matlab scripts were
written to obtain data from the NOB program and send motion commands to the dogs to
get raw data, to process the data, and to plot it. Both of these programs were designed to
work on a Linux computer. The C++ program was a completely separate program from

 27

the Matlab scripts. The Matlab script simply executed the C++ program and redirected
the program’s output so that it could be parsed and used by the Matlab script.

3.1 Nest of Birds Control Program

The NOB consists of four sensors and a central unit (including the transmitter), so
this kind of configuration was modeled using C++ classes, which is consistent with the
principles of good object-oriented design [9, p. 85]. A class called Bird was created that
contained data pertinent to an individual sensor, such as the bird address, hemisphere,
data mode, and status. The class has methods that are important to a sensor. There is an
auto-configure method, set data mode, set hemisphere, get status, get error, and get data
packet. The system is made to work only in the Point/Angle data mode.

 A class called Nest is a model for the whole device. It contains an array for all
the Bird objects in the Nest as well as data members and methods of its own that are
important for the NOB as a whole. It contains the transmitter address and mode (as well
as methods to get and set these). This class constructor initializes the whole system by
connecting to the NOB, configuring it, and creating a certain number of Bird objects
based on the number used in the NOB (4 was always used).

The main function of the program creates a Nest object with 4 Birds and then sets
up the Birds (all have upper hemisphere and position/angle data mode) and the
transmitter (pulsed mode and address is bird 4). Then the program then simply reads
points from the device. The positions and angles are 2-byte integers (± 32767). The data
bytes read from the NOB are first processed (bit manipulation) and then converted to the
appropriate units (centimeters and degrees). The positional integers are relative to 3 feet.
Thus to convert to centimeters:

 (pos/32767)*(36 in/3 ft)*(2.54 cm/1 in) = 0.0027906125*pos

Angle integers are relative to 180°, so to convert to degrees:

 (angle/32767)*(180 degrees) = 0.0054933332*angle

3.2 Aibo Motion Calibration Matlab Scripts

There are three basic steps to the motion calibration: 1) Obtain calibration data
and store it to a file, 2) process the data and store it in another file, and 3) graph the
results. The dog can be commanded through a Matlab interface. For this reason and for
ease of development, Matlab was used to create these parts of the calibration software.
Similar Matlab programs were developed to calibrate the dog’s kicks.

 The first program runs the experiment. One of the sensors is attached to the dog
and the dog is placed close to the transmitter (about a foot away, to keep the sensor
within transmitter range). The NOB is started and an initial position reading is taken.

 28

The dog then walks in the way specified on the command line, x, y, and θ (in millimeters
and degrees). Another reading is taken after the dog is done walking, and both the start
and end readings are written to a file. The dog then tries, through a simple negative
feedback mechanism, to get to the start position, so that the dog does not eventually drift
out of sensor range. The dog repeats this process many times.

The data must be processed for
two reasons. First, the motions that the
dog is commanded to do are all relative
to the end of his head and not where the
sensor is (taped to a ruler on the dog’s
side to keep the sensor away from the
magnetic interference of the dog’s servo
motors). So the sensor positional
information and the known distance
from the end of the head to the sensor
must be used to get the head position.

Figure 4: Coordinate system diagram.

Figure 4 shows a simple diagram of the
dog; the distances d1 and d2 have been
measured for the Aibo and Xsen, Ysen,
and θ are obtained from the NOB. The
transformation from sensor to head
coordinates is:

 Xhead = Xsen - d1*Cos(θ) -
d2*Sin(θ)
 Yhead = Ysen – d1*Sin(θ) +
d2*Cos(θ)

The second reason is to get the
data in the right coordinate system. The
x, y, and θ displacements should be in
the coordinate system of the dog’s start
position, with the end of its head as the
origin. This has two implications. First,
x and y translations must done to get the
dog’s head to be the origin rather than
the transmitter. Second, the dog’s
coordinate system maybe at an angle
with the transmitters, so a coordinate
system rotation is needed (the θ change
is the same for all reference frames:
θFINAL – θINIT.):

 Xmove = + (XFINAL –
XINIT)*Cos(θINIT) + (XFINAL –
XINIT)*Sin(θINIT)
 Ymove = - (XFINAL – XINIT)*Sin(θINIT)
+ (YFINAL – YINIT)*Cos(θINIT)

3.3 Aibo Motion Calibration results

The C++/Matlab system was
used to calibrate the x, y, and θ of the
dog. Only one direction was done in a
trial (e.g., the dog would never do a
forward and then walk left). The x and y
motions were tested from -20 to +20 cm
in 2 cm increments and θ from -100º to
+100º, in 20º increments, with 10 to 20
data points for each walk.

 Two important pieces of
information needed to be obtained from
the data: the ratio between the value of
the real action and the commanded
action, and whether there were any
significant aberrant movements (e.g., if
the dog was walking forward, did it drift
right or left, or turn). These types of
conclusions are much harder to quantify
since there are no expectations for the
pattern they should follow; the ratios of

 29

command to actual movement are
expected to have a linear relationship.
To find these ratios for each movement
type (x, y, and θ) the average actual
displacement for a particular distance
command was found, and a linear
regression was performed on these data
(see Table 1):

Tabl
e 1: Results from linear regressions on
calibration data.

These regressions were not
sufficient, since the graphs clearly show
that for all motion types the results for
positive and negative motions were very
different (see Appendix A). Therefore,
separate regressions were done on the
positive and negative motion data (see
Table 2):

Motion Negative
Reg.

Positive
Reg.

Y (Forward/Back) 0.7111 0.8404
X (Right/Left) 0.6946 0.7398
Theta
(Counterclockwise/Clockwise)

0.8987 0.9249

Table 2: Results from linear
regressions on positive and negative
sections of calibration data.

 For the forward and side motions
the drifts were small (averages were all
less than
5° or 2 cm in magnitude). Also, the
linear regressions for each were all less
than 0.1, so they showed no trend. The
turns actually caused large negative x
displacements that increased with the
turn’s magnitude. Also, the right turn

caused a positive x (right) displacement,
and the left turn caused a negative x
(left) displacement (see Figure 5):

Figure 5: Graphs of x and y
displacement during turn calibration.

These results show that the dog’s
turns, which were supposed to be
performed around the tip of the dog’s
head, were actually being performed at a
point approximately 5.8 cm behind this.
This was later confirmed visually.

 Three kicks the paw, and right
and left kicks were calibrated. The x, y,
and θ displacements for 30 kick trials
were obtained for each kick type. For
the paw kick, as expected, the dog never
turned more than 6° and never moved
more than 2.5 cm forward, back, left, or
right. For the left and right kicks the dog
would move to the left and right on
average 15-16 cm and 2-4 cm
backwards. The dog also changed its
angle by 50°-60° each time. This again
was expected; the dog must turn about

Motion Linear
Regression

Y (Forward/Back) 0.7757
X (Right/Left) 0.7172
Theta
(Counterclockwise/Clockwise)

0.9107

 30

its center to kick the ball to the side,
which explains the left and right
displacements.

4. DOG CONTROL AND
MONITORING SYSTEM: SERVER

4.1 Purpose and Basic Design

The purpose of this system is to
create an integrated monitoring and
control system for the dogs that can be
used for development and debugging
purposes. The system is designed to
have an intermediate system between the
dogs and the client-- a server – for
several reasons. First, the dog’s
networking system is such that only one
person may connect to a TCP port at a
time. Having to handle many
connections would add a heavy load on
the dog’s systems. Second, the server
can control and regulate access to
information. Third, the server can also
do some data processing. For instance
sometimes more information will be sent
out from the dog than is needed. The
server can eliminate this unneeded data
before sending it to the client. Lastly,
for high-volume, error-flexible outputs
such as video the server can take the data
from the dog via TCP and then use UDP
to multicast it out, which reduces the
load on the server and network [10, pp.
469-470, 528].

 The system has a Linux server
that consists, of four servers, written in
C++ and a Microsoft Windows client
written in C# for the .NET framework.
Each server is for one type of input or
output. One is for clients to send
commands for the dog to execute, one is
for dog text outputs, another is for the

dog’s “blob vision” (see Section 2.4),
and one is the camera server.

4.2 General Server Libraries

A key feature of any server is its
ability to handle the myriad errors that
can occur in a network. The most
important errors occur during reading,
writing, and connect. Reads and
connects can potentially block forever if
the end point cannot be reached, since
they will just keep trying. For writing, if
a write occurs on a closed socket in Unix
a signal will be sent that will shutdown
the program unless it is caught. In order
to deal with these and other issues, a
class of static wrapper functions for
regular socket systems calls (bind, read,
close, etc.) was created. These wrappers
handle the important read, connect, and
write problems with timeouts and signal
handlers and also throw exceptions when
these problems occur or if a system call
returns an important error.

 These functions were then used
to create classes for sockets. A base
class was created called Socket{}. This
class lays out the basic interface
implemented by all the later derived
socket class types (TCP client socket,
etc.), by declaring an important set of
virtual functions. This interface consists
of a constructor that creates the socket
and, if required by the socket type (as for
a TCP listening socket), binds it to a port
and IP address. The destructor of the
class closes the socket. The only other
functions are read and write (the read
function requires that a timeout be
specified). Several types of socket
classes are derived from the base socket
class: TCP client, TCP listening, TCP
server, and multicast server sockets.
This interface makes any socket class

 31

match the simple theoretical model of a
socket: a connection to another computer
that is created to send and receive
information and then be destroyed. This
is one of the guidelines for good object-
oriented design [9, pp. 76-101].

4.3 General Server Functions and
Control Flow

Although each server is made
separately because each has different
requirements, large parts of the control
flow of each server are similar. Each
server works on the “one thread per
client” design paradigm (also, for some,
one thread per dog), rather than a “one
process per client” paradigm [10, pp.
752-754]. This is done because threads
are faster to create, and sharing data

between threads in global variables is
easier than sharing data between
processes by IPC. Each server also has
the same main loop (see Figure 6).

Figure 6: Flow chart for server main
loop.

This loop is ubiquitous for all the servers, so it is a universal function. Then each
server enters a per-client thread to handle that client’s needs. The resulting control flow
is shown in Figure 7:

Figure 9: Flow chart of beginning of per-client thread, where the request dog domain
name is retrieved and processed.

After this the servers act differently. Each server has to remember what dogs are
being used, to know what to do with a new request for a dog. Three of the servers have
to associate other information with any dog that is being used (the multicast port for that
dog, the number of clients using it, etc.). So each server has a list of dogs that is
implemented using the C++ Standard Template Library map container class. The map

Receive dog name from
client (1 sec timeout)

Received?

Yes
Get dog IP from name

Valid IP?

Yes

No

No

?????

Tell client got no dog
name, close socket, end

Tell client dog name is
bad, close socket, end

Create TCP
Listening Socket

Wait for Client to
Connect

Create Thread to
Handle Client

Client
Connects

32

stores these dog-specific objects, with each object mapped (stored and looked up) by the
IP address of the dog [11, pp. 466-473].

 The servers next look for the requested dog in the map. For the input server, if
the dog is found then the client is told that the dog is being used, closes the socket, and
ends. The output type servers allow for multiple clients to access the same dog, since this
does not cause a problem. For these servers the flow of control is shown in Figure 8:

Figure 8: Flow chart of per-client thread (for output type servers).

The main difference here between servers is between the output server and blob and
camera servers (see Section 4.2). Finally, the per-dog thread for these servers is shown in
Figure 9:

Figure 9: Flow chart of per-dog thread (for output type servers).

4.4 Server-Specific Details

4.4.1 Input and Output Servers

No
Dog in List?

Decrement client count or remove
client socket from list, end

Yes

Increment number of clients
and tell client multicast port or
put client socket on socket list
and tell client ok

Read with infinite timeout,
read will finish when socket
closes (client is gone)

Connected?

Yes

Add dog to list

Connect to dog
 (3 second timeout)

Tell client no connect to dog, close
socket remove dog from list end

No

Create multicast socket (if needed), put sockets
into dog member of list, start per-dog thread

Is number of clients
> 0 or is client
socket list is not

Get data from dog and send to
multicast socket or go through
client socket list sending to each

Remove dog from list, close sockets,

Yes

No

33

The input server does not need to have per-dog threads, since each dog can only
be used by one client. After the dog is connected to the server loops infinitely, waiting
for commands with a 5-minute timeout. If a read error or timeout occurs, the server
assumes the client is done with the dog, closes the socket, removes the dog from the list,
and ends the thread. The strings (commands) that the server gets from the client must be
packaged into an OPEN-R packet (see Section 2.3) before being sent to the dog.

 The output server’s dog list contains objects with the TCP socket connected to the
dog and another map of TCP sockets, each connected to a client for that dog. The output
data from the dog are sent to each client one at a time by TCP sockets and not through a
multicast, for reliability; the client cannot miss error messages from the dog, and
multicast uses UDP, which does not have guaranteed delivery. But since a new message
must be sent to each client one at a time, if a new message comes in before the last is
sent, messages might be missed. Two assumptions mitigate this problem. First, it is
assumed that the number of clients will be very low (around 5 per dog at most). Second,
it is assumed that all clients will be on the same local Ethernet as the server. Thus there
will be few clients to write to, and each write will be fast, so messages will not be missed.

4.4.2 Blob Server

This server works via multicast. Each object in the dog map has the TCP socket
connected to the dog, the multicast socket, and the number of clients using the multicast.
A data set is requested, and the dog then sends the server an OPEN-R package. After the
total size and number of data comes a special header that specifies the size of the two-
dimensional array that holds the blob information (the rows are integer values for the
blob description structure, and the columns are each individual blobs). A two-
dimensional array of this size is created, and the data are then read from the dog into this
array. The important data for displaying blobs are extracted from the array (color, lower
left corner, and upper right corner x and y) from each blob structure and are then sent to
the multicast. The server then waits for 0.2 seconds before getting and sending the next
set of blobs.

4.4.3 Camera Server

This server works almost identically to the blob server except that there is no
special header. The dog sends the OPEN-R packet header (total size and number of data)
and the compressed JPEG version of the last image taken by the camera. This file (array
holding the JPEG) is so large (between 2000 and 10000 bytes) that it must be written to
the multicast socket in pieces. Retrieving the JPEG from the dog and writing it to the
multicast takes so long that no pause is done. In fact, the size of the JPEG completely
controls the speed at which images are sent.

 JPEG is an image compression format, and thus the size of the image is related to
its complexity (simple pictures can be compressed more than complicated ones). Thus
the more complex the image the dog sees, the longer it takes to receive and multicast, and
the fewer frames per second (FPS) the camera achieved. A test was done to quantify the

34

relationship between FPS and JPEG size. The FPS at an instant was calculated as FPS =
1/(time of last receive and multicast). As the camera server transmitted, the dog’s image
was made more and less complex by putting a piece of white paper in front of the camera.
The graph made using the 860 data points collected is shown in Figure 10:

Frames Per Second vs. JPEG Size

y = 10459x-0.8551

R2 = 0.9212

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000 12000

JPEG Size (bytes)

F
ra

m
e
s
 P

e
r

S
e

Figure 10: FPS vs. JPEG size for camera server

The relationship of this graph was hypothesized to be: FPS α 1/JPEG size. The
regression of the graph supports this, since its estimated function is close to
FPS=1/(JPEG size), and the R2 is above 0.9. The graph also shows the limits of the FPS:
the camera works between approximately 4 and 13 frames per second. Four FPS is not
very fast, and certainly does not produce streaming video, but it is much better than the 1
to 2 FPS achieved in the previous dog camera system design.

5. DOG CONTROL AND MONITORING SYSTEM: CLIENT

5.1 Client Basic Design

Most of the design and features of the client program come directly as a
consequence of the design and control flow of the server, but several important features
and design concepts should be emphasized. As mentioned earlier, the client is a
Microsoft Windows program written in C# (with Visual Studio .NET) for the new .NET
framework. The client has a main window where the user can specify the dog and
function (blob vision, etc.) desired, and a new window for this will be created. The client
is multithreaded, spawning new threads for each output type service (e.g., a new thread is
created to handle the continuous receiving and displaying of data from a blob observer,
camera, or output server socket), so the main thread is not over-burdened. When
exceptions are caught or error messages are sent from the server, a message box showing
that error is displayed, and the window it came from is shut down (along with any
threads). Screen shots of the main window and some other windows are in Appendix B.

35

The input window has a text box for writing commands and buttons to send

commands to the server and clear the text box. The input window can save and load
scripts stored in .txt files. The output window has a read-only text box that shows the
output text from the dog. It can also save the output of the dog to a .txt file.

 The blob observer, camera, and remote all have user controls created to handle
these particular graphics displays. Each one uses the .NET framework’s System.Drawing
library and its Graphics class. For the blob observer, for each blob a FillRectangle and a
Rectangle (for black outline) are drawn in the user control window (see Section 2.4). For
the camera observer, the JPEG data are read into an array, which is read into a Stream
object, which is read into an Image object, which is then displayed. The network
transmissions and these steps account for the almost one-second delay between the time
an image is captured by the camera and when it shows up on the client window.

5.2 Remote Control Client

The fifth client window is the remote control (see Appendix B). This program
connects to both the input server and camera server, allowing the user to navigate the dog
around a room. Certain keys are bound to sending specific commands to the dog (using
callbacks). Thus there are keys to make the dog go forward, backward, right, and left,
and to turn right and left. Also, if the user clicks on a certain point in the camera image,
the program takes the position of that click and computes what command it should send
to the dog to have it point the camera in that direction.

 To compute this value requires understanding how the dog is commanded to
move its head. A command called PointHead has three parameters: the x, y and z (in
mm) coordinates (body’s coordinate system) of the object that the dog should try to look
at. For the remote, the dog is commanded to look at an object 1 meter away at the
azimuth and elevation where the screen was clicked. Calculating the point head
parameters requires two steps. First, the x, y, and z coordinates of the camera vector are
calculated for the dog’s head’s coordinate system. Second, these coordinates are
transformed into the dog’s body’s coordinate system.

The distance in u and v (pixels) from the center point of the camera to the click
point are found. The focal length of the camera is 161 pixels. Thus a vector from the
camera center to the click point is created (see Figure 11). The azimuth (Φ) and elevation
(Θ) of this vector are calculated from u, v, and the focal length.

36

Figure 11: “Click” vector from camera to image diagram

Φ = ArcTan(u/161)
Θ = ArcTan(v/(u2 + 1612)1/2)

Another vector in this same direction, only 1 meter in length, is the vector of the
new point where the dog should look. The azimuth and elevation are used to find the x,
y, and z coordinates of the end of this vector in the head’s coordinate system.

Xhead = 1000*Cos(Θ)*Sin(Φ)
Yhead = 1000*Cos(Θ)*Cos(Φ)
Zhead = 1000*Sin(Θ)

The head is at a certain azimuth and elevation relative to the dog’s body

coordinate system. This azimuth and elevation can easily be determined by knowing the
x, y, and z coordinates in the body’s coordinate system of the last PointHead command.
These angles are used to translate the new PointHead coordinates from the head’s
coordinate system to the body’s coordinate system.

Xbody = Xhead*Cos(Az.) + Yhead*Sin(Az.)*Cos(El.) - Xhead*Sin(Az.)*Sin(El.)
Ybody = -Xhead*Sin(Az.) + Yhead*Cos(Az.)*Cos(El.) – Zhead*Cos(Az.)*Sin(El.)
Zbody = Yhead*Sin(El.) + Zhead*Cos(El.)

The only factor unaccounted for is the pitch (dog twists its head). The previously

stated algorithm works on the assumption that in order to look at a point the dog turns
and raises or lowers its head, but does not twist it. This is only true for small azimuths
and elevations. For large angles the dog’s head twists and the algorithm breaks down.
Two measures correct this: the angles to which the dog can be commanded to move its
head can are limited, and if a problem occurs the “look front” button can be pressed,
which will reset the dog to look forward.

6. DISCUSSIONS AND CONCLUSIONS

The motion calibration system developed here may not be precise enough and
easy enough to use for the required needs. The system worked well only for short-range,
repetitive motions such as walks and kicks. One problem is that the NOB itself does not
have a large range. This could be fixed by adding an extended range transmitter, but then
there is the problem of wires. Even if a large area can be covered the dogs cannot be
allowed to move anyway they wish, because they will become tangled in the cords.
Wireless sensors can be obtained, but then the magnetic interference from the dog’s
motors will probably interfere with the transmissions.

The motion calibration system does do a good job at discovering major trends in
the dog’s movements, such as discovering that the dog did not turn precisely around the
end of its head. It can also tell if the calibration factor for a motion is greatly off, but
between natural inconsistencies in movement, uncertainty, interference from the dog’s

37

motors, and the somewhat crude system (using the ruler) to counteract this, precise
results about the dog’s motions are probably not obtainable.

The server/client system does offer some valuable tools. This system is a good
basic platform for debugging the Aibos. The existing client already has many features
that make it a valuable for system debugging, and these tools can easily be added to.

7. FUTURE WORK AND RECOMMENDATIONS

The motion calibration system has produced some good results, but has not
reached its full potential and may never do so. Given the facts of limited system range
and motor interference, the NOB does not seem to be the best choice for a positioning
system. Given the time and effort required to set up the extended range transmitter and
perhaps get wireless sensors, it may be better to try another positioning system. It is also
now clear though, that there are great benefits to having a positional system especially if
it is integrated with the server system.

There is clearly great potential in the server system. The infrastructure and
libraries are there to easily add servers for other types of sensory outputs (such as sound
or positional information from some external device). There is also great potential for
creating more complex and useful clients (such as the remote control) that interact with
multiple servers. Examples include a better color mapping system that could interact
with the input, camera, and blob servers to allow for easier creation of color maps, and
creation of a program for teaching the dogs where they are on the field that would interact
with the positional, input, and output servers.

8. ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Daniel Lee of the University of
Pennsylvania, for all of his assistance, expertise, and patience. I would also like to thank
Paul Vernaza and David Cohen for their help with the Aibos, and Janice Fisher for her
assistance with this paper. Finally, I would like to thank the Microsoft Corporation for
their generous support of my project and the SUNFEST program.

38

9. REFERENCES

1. Sony, Sony Four Legged Robot Football League Rule Book, Sony Corporation, 2003.

2. Sony, OPEN-R SDK: Model Information for ERS-210, Sony Corporation, 2002.

3. Sony, OPEN-R SDK: Programmer’s Guide, Sony Corporation, 2002.

4. Sony, OPEN-R SDK: OPEN-R Internet Protocol Version4, Sony Corporation, 2002.

5. Dr. Daniel Lee, David Cohen, and Paul Vernaza, Autonomous Robot Soccer Team
Implementation for Robocup 2003 Legged League, Unpublished, 2003.

6. Manuela Veloso et al., CMPack-02: CMU’s Legged Robot Soccer Team, Unpublished,
2002.

7. Ascension Technology, Flock of Birds: Technical Description of DC Magnetic
Trackers, Ascension Technology Corporation, Burlington, VT, 2002.

8. Ascension Technology, Flock of Birds: Installation and Operation Guide, Ascension
Technology Corporation, Burlington, VT, 2002.

9. Cay S. Horstmann, Mastering Object-Oriented Design in C++, John Wiley & Sons,
Inc., New York, NY, 1995.

10. W. Richard Stevens, Unix Network Programming, Vol. 1, Prentice-Hall, Upper
Saddle River, NJ, 1998.

11. Matthew H. Austern, Generic Programming and the STL, Addison, Wesley, and
Longman, Inc., Reading, MA, 1999.

39

10. APPENDIX A: CALIBRATION GRAPHS

Figure 1: Forward motion calibration
(single linear regression).

Figure 2: Side motion calibration (single
linear regression).

Figure 3: Turn calibration (single linear
regression).

Figure 4: Forward motion calibration
(positive and negative linear
regressions).

Figure 5: Side motion calibration
(positive and negative linear
regressions).

Figure 5: Side motion calibration
(positive and negative linear
regressions).

40

11. APPENDIX B: CLIENT PROGRAM SCREEN SHOTS

Figure 1: Picture of main window and sub-windows for client program.

Figure 2: Window of input client program.

Figure 3: Window of output client program.

41

Figure 4: Window of remote control client program.

