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ABSTRACT 
 

The Sony Aibo are robotic dogs used to test new ideas in artificial intelligence, 
computer vision, and robotic motion through the application of having the dogs play 
soccer.  An important part of building the system the dogs use is debugging.  There are 
two key parts to this process: calibrating the dog’s motions, and monitoring the dog’s 
sensory outputs and control input.  Both parts of the process help the developer to 
understand how the dog perceives the world and acts in it.  Each of these questions was 
addressed with a different system.  A magnetic positional sensor device was used (along 
with dog control and data processing programs) to obtain calibration information about 
the dog’s various walks and kicks.  A client/server system was developed to allow 
multiple users to access different sensory outputs, the dog’s command input (only one 
user at a time), and the dog’s standard output in order to facilitate system development 
and debugging. 
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1. INTRODUCTION 
 

The Sony Aibos, like any intelligent agent, interact with the world through a 
sequence of perception, evaluation, and action.  In this project, the Aibo’s actions were 
calibrated, and a system to monitor the Aibo’s perceptions (and also control its actions 
directly) was created.  Calibrating motions determines how commanded motions (and 
their expected results) compare with the actual motions performed.  Information about 
this can be used to adjust the system, so the dogs’ expected actuations are carried out as 
accurately as possible.  Controlling the dog (or letting the dog control itself) while 
monitoring its different sensory and system outputs is an important step in understanding 
and debugging the dog’s sensor, information processing, and self-control systems.  In 
other words, in order to understand what the dog is doing, one must “see” the world as 
the dog does by viewing its sensory outputs.  A system using a sensor device (for precise 
positional information), associated program, and calibration scripts was used for motion 
calibration, and a client/server program was created to allow for dog control and 
observation of dog outputs by multiple users at once.  In the future, it is hoped, these 
systems will be integrated to give the developer more tools. 

 
 This paper outlines the design of these two systems as well as the results from two 
iterations of motion calibration.  Section 2 provides background on the hardware and 
operating system of the Aibo, the software systems developed by Dr. Daniel Lee for the 
Aibo to use for soccer, and the principles, hardware, and operating system for the Nest of 
Birds (NOB) sensor device used in the motion calibration.  Section 3 discusses the 
creation of a control program for the NOB as well as calibration scripts.  The section also 
covers the results of some of the motion calibrations done for the dogs.  Section 4 covers 
the design, implementation, and use of the monitoring and control server for the Aibo.  
Section 5 covers the design and use of the first prototype client created to interact with 
the server.  Discussion and conclusions are presented in Section 6 and future work and 
recommendations in Section 7. 
 
2. BACKGROUND 
 
2.1 Sony Aibo and Robocup Soccer 
 

The Sony Aibo (see Figure 1) is a robotic 
dog used by universities for research, particularly 
to participate in Robocup Soccer.  This is an 
event sponsored by the Robocup Federation in 
which robots of different types (including the 
Sony Aibo) play soccer; in the Aibo case the 
game is played with teams of four [1, pp. 1-4].  
All perception, decision, and actuation activities 
are performed by the Aibos themselves, although 
communication and coordination is allowed 
(with strict rules) between dogs through a 
wireless network [1, pp. 1-4].  

Figure1: The Sony Aibo. 
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These tournaments create an activity through which new ideas about computer 

vision, robotic motion, and artificial intelligence are developed and tested.  After the 
annual tournament, each team writes a report describing their system, so that groups learn 
from one another and advance scientific development. 
 
 The Sony Aibos are themselves a powerful platform on which to work.  Each dog 
has four legs, each with a motor in the hip, knee, and ankle that allow for three degrees of 
freedom in each leg [2, pp. 7-12].  The dog’s head and neck has three motors that give it 
three degrees of freedom (pan, tilt, and roll) [2, pp. 6-12].  A camera in the dog’s head 
has a focal length of 161 pixels (2.18 mm), operates at 25 frames per second, and takes 
images that are 352 x 288 pixels in size [2, p. 20].  The Aibo also has a short-range 
distance sensor, two-channel microphone, and speaker [2, pp. 19-21].  Each dog also has 
a slot for an IEEE 802.11 wireless Ethernet card.  The Aibo operating system also has a 
built in Application Programming Interface (API) using Sony’s OPEN-R technology.  
The technology allows custom programs to be written that operate the dog [3], running 
off memory sticks inserted into a slot on the dog.  A TCP/IP networking stack allows the 
Aibo to communicate with other Aibos and computers over a wireless Ethernet [4]. 
 
2.2 Aibo Software 
 

Dr. Daniel Lee and colleagues have created an extensive software system that 
runs the Aibo team.  At the lowest level, code written in C++ interacts directly with the 
Aibo’s API to handle some of the basic functionalities of the dog, such as its vision 
system.  On top of this is the core high-level decision-making program consisting of a 
state machine [5, p. 1].  Previously this layer was implemented in C/C++, but a more 
flexible solution was found in running a PERL script on a PERL interpreter embedded in 
the Aibo [5, p. 1].  PERL had several advantages including the ability to recover from 
errors, ease of development, and extensibility that allowed the low-level C++ 
functionalities to be called through a limited interface, allowing for maximum 
implementation encapsulation [5, p. 2]. 
 
2.3 Important Aibo Inputs/Outputs 
 

Although the Aibos perform autonomously during competition, the system in 
Section 2.2 does have inputs and outputs to which other computers can connect, assisting 
in debugging and development (communication with the Aibo is described in Section 
2.1).  The system connects specific outputs and inputs to different ports in the dog’s 
networking stack; for example, port 59000 is the standard output for the dog (where 
system information and error messages are shown), so if another computer connects to a 
dog’s IP address on port 59000 it can retrieve these messages.  In addition, 1001 is the 
input port, 6006 is the “blob vision” port (see Section 2.4), and 6000 is the camera port.  
A special format for the packets sent to these ports is specified by the OPEN-R protocol.  
Each packet has a total size (integer) value telling the total number of bytes in the packet 
and a number of data (integer) value that is the number of data elements in the packet, in 
addition to the data itself.  For the input, the data is a string that represents a command to 
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be executed by the dog.  This takes advantage of a useful feature of PERL: Since PERL is 
interpreted commands can be executed on the fly [5, p. 2]. 
 
 
2.4 Aibo Vision System 
 

Each image from the camera comes out in YUV pixel format.  Existing computer 
vision systems cannot deal with the complexity of even the simplest photograph, so in 
order for the Aibo to extract relevant information from the images, the photos must be 
simplified into a form that the Aibo’s processing power and known computer vision 
techniques can handle.  The simplification system is based on the needs of the Robocup 
soccer field; on the field important visual cues for the dog are distinct colors (the ball is 
bright orange, the goals are yellow and blue, etc.).  The distinct colors give the dogs 
specific visual cues to look for; i.e., they only need to recognize this particular subset of 
visual stimuli. 

 
Each pixel of the image is 

mapped to one of the important cue 
colors (orange, blue, green, etc.) or to 
nothing, in a method similar to that used 
by Carnegie Mellon University’s Aibo 
team [6, p. 2].  In essence, every pixel 
that is close to green is mapped to green, 
every pixel that is close to orange is 
mapped to orange, etc. and everything 
else is ignored.  Although the number of 
colors has been limited there are still 
thousands of individual pixels.  The 
image is processed again, so that an area 
with a large concentration of a particular 
color pixel is united into one box. 

 
 
Figure 2: Blob view image. 

 
Each box (which is also called a “blob”) has certain characteristics: the position of 

each corner and of the centroid (the center of mass of the pixels).  After processing, the 
image becomes an array of bounding box structures that stores the information on all 
“blobs” in the image.  This is simple enough for the dog to process; for example, in order 
to find the ball the Aibo simply looks for an orange blob.  Figure 2 shows a blob view 
image. 
 
2.5 Nest of Birds (NOB) Design, Operating System, and API 
 
 The NOB (see Figure 3) is a magnetic sensor device with a central unit, a 
transmitter, and four sensors.  The sensors and transmitters are attached to the central unit 
by cables.  The device is connected to a computer via a serial port in its central unit.  The 
NOB works by magnetic field emission and electromagnetic induction.  The transmitter 
and the sensors all have electrical coils in the x, y, and z directions [7, pp. 2-3].  The 
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transmitter turns on each coil one at a time, 
and the magnetic field emitted by the coils 
induces an electric current in the coils of the 
sensors [7, pp. 3-4].  The amount of 
induction in each coil is inversely 
proportional to the distance to the 
transmitter and orthogonality of the angle of 
the coil to the field.  Thus by comparing the 
induced voltages in each sensor coil (x, y, 
and z) when each of the transmitter coils (x, 
y, and z) is on, the device can tell the 
relative position (x, y, and z) of the sensor to 
the transmitter and the azimuth, elevation, 
and roll of the sensor relative in the 
coordinate system of the transmitter.  The 
NOB has a range of 3 feet from the 
transmitter [8, p. 8]. 

 

 
 
Figure 3: Nest of Birds device

 
The API of the NOB consists mainly of commands represented by single-byte 

positive integers.  Sending a certain byte to the NOB via the serial port tells the NOB to 
perform a particular action; for example, writing number 66 asks for a data point from a 
sensor [8, p. 88].  Many functions in API are superfluous to the simple system needed for 
motion calibration; so only key features will be discussed. 
  

The NOB has certain parameters that help control its actions (all can be examined 
and some can be changed): the error status of each bird, the address of the transmitter, 
etc.  The examine/change functions are used to manipulate these parameters, and thus 
control the actions of the NOB [8].  In this way, for example, the transmitter mode, bird 
hemisphere (direction of the coordinate system of the sensor), and bird data mode are all 
set.  Each bird (sensor) has an address; these addresses are from 1 to the number of birds 
in the device (here, 4).  The status of each bird can also be obtained, which will tell much 
about its state: is it master or slave, running or not, error or none, etc.  The auto-
configuration function tells a bird to be the master bird, through which all 
communications to other birds must go, and how many birds there will be.  Without the 
auto-configuration, only one bird can be used at a time [8, pp. 131-134]. 
 
 
3. AIBO MOTION CALIBRATION SYSTEM 
 

The motion calibration system was designed around the NOB magnetic sensor 
device in two parts.  First, a C++ program was designed to initiate and configure the 
NOB and to obtain data from the device when asked.  Second, Matlab scripts were 
written to obtain data from the NOB program and send motion commands to the dogs to 
get raw data, to process the data, and to plot it.  Both of these programs were designed to 
work on a Linux computer.  The C++ program was a completely separate program from 
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the Matlab scripts.  The Matlab script simply executed the C++ program and redirected 
the program’s output so that it could be parsed and used by the Matlab script. 
 
3.1 Nest of Birds Control Program 
 

The NOB consists of four sensors and a central unit (including the transmitter), so 
this kind of configuration was modeled using C++ classes, which is consistent with the 
principles of good object-oriented design [9, p. 85].  A class called Bird was created that 
contained data pertinent to an individual sensor, such as the bird address, hemisphere, 
data mode, and status.  The class has methods that are important to a sensor.  There is an 
auto-configure method, set data mode, set hemisphere, get status, get error, and get data 
packet.  The system is made to work only in the Point/Angle data mode. 

 
 A class called Nest is a model for the whole device.  It contains an array for all 
the Bird objects in the Nest as well as data members and methods of its own that are 
important for the NOB as a whole.  It contains the transmitter address and mode (as well 
as methods to get and set these).  This class constructor initializes the whole system by 
connecting to the NOB, configuring it, and creating a certain number of Bird objects 
based on the number used in the NOB (4 was always used). 
  

The main function of the program creates a Nest object with 4 Birds and then sets 
up the Birds (all have upper hemisphere and position/angle data mode) and the 
transmitter (pulsed mode and address is bird 4). Then the program then simply reads 
points from the device.  The positions and angles are 2-byte integers (± 32767).  The data 
bytes read from the NOB are first processed (bit manipulation) and then converted to the 
appropriate units (centimeters and degrees).  The positional integers are relative to 3 feet.  
Thus to convert to centimeters: 

 
 (pos/32767)*(36 in/3 ft)*(2.54 cm/1 in) = 0.0027906125*pos 
 

Angle integers are relative to 180°, so to convert to degrees: 
 
 (angle/32767)*(180 degrees) = 0.0054933332*angle 
 
 
3.2 Aibo Motion Calibration Matlab Scripts 
 

There are three basic steps to the motion calibration: 1) Obtain calibration data 
and store it to a file, 2) process the data and store it in another file, and 3) graph the 
results.  The dog can be commanded through a Matlab interface.  For this reason and for 
ease of development, Matlab was used to create these parts of the calibration software.  
Similar Matlab programs were developed to calibrate the dog’s kicks. 

 
 The first program runs the experiment.  One of the sensors is attached to the dog 
and the dog is placed close to the transmitter (about a foot away, to keep the sensor 
within transmitter range).  The NOB is started and an initial position reading is taken.  
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The dog then walks in the way specified on the command line, x, y, and θ (in millimeters 
and degrees).  Another reading is taken after the dog is done walking, and both the start 
and end readings are written to a file.  The dog then tries, through a simple negative 
feedback mechanism, to get to the start position, so that the dog does not eventually drift 
out of sensor range.  The dog repeats this process many times. 
 

The data must be processed for 
two reasons.  First, the motions that the 
dog is commanded to do are all relative 
to the end of his head and not where the 
sensor is (taped to a ruler on the dog’s 
side to keep the sensor away from the 
magnetic interference of the dog’s servo 
motors).  So the sensor positional 
information and the known distance 
from the end of the head to the sensor 
must be used to get the head position. 

 
 
Figure 4: Coordinate system diagram.

Figure 4 shows a simple diagram of the 
dog; the distances d1 and d2 have been 
measured for the Aibo and Xsen, Ysen, 
and θ are obtained from the NOB.  The 
transformation from sensor to head 
coordinates is: 
 
  Xhead = Xsen - d1*Cos(θ) - 
d2*Sin(θ) 
     Yhead = Ysen – d1*Sin(θ) + 
d2*Cos(θ) 
 

The second reason is to get the 
data in the right coordinate system.  The 
x, y, and θ displacements should be in 
the coordinate system of the dog’s start 
position, with the end of its head as the 
origin.  This has two implications.  First, 
x and y translations must done to get the 
dog’s head to be the origin rather than 
the transmitter.  Second, the dog’s 
coordinate system maybe at an angle 
with the transmitters, so a coordinate 
system rotation is needed (the θ change 
is the same for all reference frames: 
θFINAL – θINIT.): 

 

    Xmove = + (XFINAL – 
XINIT)*Cos(θINIT) + (XFINAL – 
XINIT)*Sin(θINIT) 
    Ymove = - (XFINAL – XINIT)*Sin(θINIT) 
+ (YFINAL – YINIT)*Cos(θINIT) 

 
3.3 Aibo Motion Calibration results 
 

The C++/Matlab system was 
used to calibrate the x, y, and θ of the 
dog.  Only one direction was done in a 
trial (e.g., the dog would never do a 
forward and then walk left).  The x and y 
motions were tested from -20 to +20 cm 
in 2 cm increments and θ from -100º to 
+100º, in 20º increments, with 10 to 20 
data points for each walk. 
 
 Two important pieces of 
information needed to be obtained from 
the data: the ratio between the value of 
the real action and the commanded 
action, and whether there were any 
significant aberrant movements (e.g., if 
the dog was walking forward, did it drift 
right or left, or turn).  These types of 
conclusions are much harder to quantify 
since there are no expectations for the 
pattern they should follow; the ratios of 
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command to actual movement are 
expected to have a linear relationship.  
To find these ratios for each movement 
type (x, y, and θ) the average actual 
displacement for a particular distance 
command was found, and a linear 
regression was performed on these data 
(see Table 1): 
  
 
  
 
 
 
Tabl
e 1: Results from linear regressions on 
calibration data. 
 

These regressions were not 
sufficient, since the graphs clearly show 
that for all motion types the results for 
positive and negative motions were very 
different (see Appendix A).  Therefore, 
separate regressions were done on the 
positive and negative motion data (see 
Table 2): 
 

Motion Negative 
Reg. 

Positive 
Reg. 

Y (Forward/Back) 0.7111 0.8404 
X (Right/Left) 0.6946 0.7398 
Theta 
(Counterclockwise/Clockwise) 

0.8987 0.9249 

Table 2: Results from linear 
regressions on positive and negative 
sections  of calibration data. 

 
 For the forward and side motions 
the drifts were small (averages were all 
less than 
5° or 2 cm in magnitude).  Also, the 
linear regressions for each were all less 
than 0.1, so they showed no trend.  The 
turns actually caused large negative x 
displacements that increased with the 
turn’s magnitude.  Also, the right turn 

caused a positive x (right) displacement, 
and the left turn caused a negative x 
(left) displacement (see Figure 5): 
 

 
Figure 5: Graphs of x and y 
displacement during turn calibration. 
 

These results show that the dog’s 
turns, which were supposed to be 
performed around the tip of the dog’s 
head, were actually being performed at a 
point approximately 5.8 cm behind this.  
This was later confirmed visually. 

 
 Three kicks the paw, and right 
and left kicks were calibrated.  The x, y, 
and θ displacements for 30 kick trials 
were obtained for each kick type.  For 
the paw kick, as expected, the dog never 
turned more than 6° and never moved 
more than 2.5 cm forward, back, left, or 
right.  For the left and right kicks the dog 
would move to the left and right on 
average 15-16 cm and 2-4 cm 
backwards.  The dog also changed its 
angle by 50°-60° each time.  This again 
was expected; the dog must turn about 

Motion Linear 
Regression 

Y (Forward/Back) 0.7757 
X (Right/Left) 0.7172 
Theta 
(Counterclockwise/Clockwise) 

0.9107 
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its center to kick the ball to the side, 
which explains the left and right 
displacements. 
 
 
4. DOG CONTROL AND 
MONITORING SYSTEM: SERVER 
 
4.1 Purpose and Basic Design 
 

The purpose of this system is to 
create an integrated monitoring and 
control system for the dogs that can be 
used for development and debugging 
purposes.  The system is designed to 
have an intermediate system between the 
dogs and the client-- a server – for 
several reasons.  First, the dog’s 
networking system is such that only one 
person may connect to a TCP port at a 
time.  Having to handle many 
connections would add a heavy load on 
the dog’s systems.  Second, the server 
can control and regulate access to 
information.  Third, the server can also 
do some data processing.  For instance 
sometimes more information will be sent 
out from the dog than is needed.  The 
server can eliminate this unneeded data 
before sending it to the client.  Lastly, 
for high-volume, error-flexible outputs 
such as video the server can take the data 
from the dog via TCP and then use UDP 
to multicast it out, which reduces the 
load on the server and network [10, pp. 
469-470, 528]. 
 
 The system has a Linux server 
that consists, of four servers, written in 
C++ and a Microsoft Windows client 
written in C# for the .NET framework.  
Each server is for one type of input or 
output.  One is for clients to send 
commands for the dog to execute, one is 
for dog text outputs, another is for the 

dog’s “blob vision” (see Section 2.4), 
and one is the camera server. 
 
4.2 General Server Libraries 
 

A key feature of any server is its 
ability to handle the myriad errors that 
can occur in a network.  The most 
important errors occur during reading, 
writing, and connect.  Reads and 
connects can potentially block forever if 
the end point cannot be reached, since 
they will just keep trying.  For writing, if 
a write occurs on a closed socket in Unix 
a signal will be sent that will shutdown 
the program unless it is caught.  In order 
to deal with these and other issues, a 
class of static wrapper functions for 
regular socket systems calls (bind, read, 
close, etc.) was created.  These wrappers 
handle the important read, connect, and 
write problems with timeouts and signal 
handlers and also throw exceptions when 
these problems occur or if a system call 
returns an important error. 

 
 These functions were then used 
to create classes for sockets.  A base 
class was created called Socket{}.  This 
class lays out the basic interface 
implemented by all the later derived 
socket class types (TCP client socket, 
etc.), by declaring an important set of 
virtual functions.  This interface consists 
of a constructor that creates the socket 
and, if required by the socket type (as for 
a TCP listening socket), binds it to a port 
and IP address.  The destructor of the 
class closes the socket.  The only other 
functions are read and write (the read 
function requires that a timeout be 
specified).  Several types of socket 
classes are derived from the base socket 
class: TCP client, TCP listening, TCP 
server, and multicast server sockets.  
This interface makes any socket class 
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match the simple theoretical model of a 
socket: a connection to another computer 
that is created to send and receive 
information and then be destroyed.  This 
is one of the guidelines for good object-
oriented design [9, pp. 76-101]. 
 
4.3 General Server Functions and 
Control Flow 
 

Although each server is made 
separately because each has different 
requirements, large parts of the control 
flow of each server are similar.  Each 
server works on the “one thread per 
client” design paradigm (also, for some, 
one thread per dog), rather than a “one 
process per client” paradigm [10, pp. 
752-754].  This is done because threads 
are faster to create, and sharing data 

between threads in global variables is 
easier than sharing data between 
processes by IPC.  Each server also has 
the same main loop (see Figure 6). 
 
 

 
Figure 6: Flow chart for server main 
loop. 
 

This loop is ubiquitous for all the servers, so it is a universal function.  Then each 
server enters a per-client thread to handle that client’s needs.  The resulting control flow 
is shown in Figure 7: 

 
 
Figure 9: Flow chart of beginning of per-client thread, where the request dog domain 
name is retrieved and processed. 
 
 

After this the servers act differently.  Each server has to remember what dogs are 
being used, to know what to do with a new request for a dog.  Three of the servers have 
to associate other information with any dog that is being used (the multicast port for that 
dog, the number of clients using it, etc.).  So each server has a list of dogs that is 
implemented using the C++ Standard Template Library map container class.  The map 
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Handle Client 

Client 
Connects 



32  

stores these dog-specific objects, with each object mapped (stored and looked up) by the 
IP address of the dog [11, pp. 466-473]. 

 
 The servers next look for the requested dog in the map.  For the input server, if 
the dog is found then the client is told that the dog is being used, closes the socket, and 
ends.  The output type servers allow for multiple clients to access the same dog, since this 
does not cause a problem.  For these servers the flow of control is shown in Figure 8: 
 

 
Figure 8: Flow chart of per-client thread (for output type servers). 
 
The main difference here between servers is between the output server and blob and 
camera servers (see Section 4.2).  Finally, the per-dog thread for these servers is shown in 
Figure 9: 
 

 
 
Figure 9: Flow chart of per-dog thread (for output type servers). 
 
4.4 Server-Specific Details 
 
4.4.1 Input and Output Servers 
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The input server does not need to have per-dog threads, since each dog can only 
be used by one client.  After the dog is connected to the server loops infinitely, waiting 
for commands with a 5-minute timeout.  If a read error or timeout occurs, the server 
assumes the client is done with the dog, closes the socket, removes the dog from the list, 
and ends the thread.  The strings (commands) that the server gets from the client must be 
packaged into an OPEN-R packet (see Section 2.3) before being sent to the dog. 

 
 The output server’s dog list contains objects with the TCP socket connected to the 
dog and another map of TCP sockets, each connected to a client for that dog.  The output 
data from the dog are sent to each client one at a time by TCP sockets and not through a 
multicast, for reliability; the client cannot miss error messages from the dog, and 
multicast uses UDP, which does not have guaranteed delivery.  But since a new message 
must be sent to each client one at a time, if a new message comes in before the last is 
sent, messages might be missed.  Two assumptions mitigate this problem.  First, it is 
assumed that the number of clients will be very low (around 5 per dog at most).  Second, 
it is assumed that all clients will be on the same local Ethernet as the server.  Thus there 
will be few clients to write to, and each write will be fast, so messages will not be missed. 
 
4.4.2 Blob Server 
 

This server works via multicast.  Each object in the dog map has the TCP socket 
connected to the dog, the multicast socket, and the number of clients using the multicast.  
A data set is requested, and the dog then sends the server an OPEN-R package.  After the 
total size and number of data comes a special header that specifies the size of the two-
dimensional array that holds the blob information (the rows are integer values for the 
blob description structure, and the columns are each individual blobs).  A two-
dimensional array of this size is created, and the data are then read from the dog into this 
array.  The important data for displaying blobs are extracted from the array (color, lower 
left corner, and upper right corner x and y) from each blob structure and are then sent to 
the multicast.  The server then waits for 0.2 seconds before getting and sending the next 
set of blobs. 
 
4.4.3 Camera Server 
 

This server works almost identically to the blob server except that there is no 
special header.  The dog sends the OPEN-R packet header (total size and number of data) 
and the compressed JPEG version of the last image taken by the camera.  This file (array 
holding the JPEG) is so large (between 2000 and 10000 bytes) that it must be written to 
the multicast socket in pieces.  Retrieving the JPEG from the dog and writing it to the 
multicast takes so long that no pause is done.  In fact, the size of the JPEG completely 
controls the speed at which images are sent. 

 
 JPEG is an image compression format, and thus the size of the image is related to 
its complexity (simple pictures can be compressed more than complicated ones).  Thus 
the more complex the image the dog sees, the longer it takes to receive and multicast, and 
the fewer frames per second (FPS) the camera achieved.  A test was done to quantify the 



34  

relationship between FPS and JPEG size.  The FPS at an instant was calculated as FPS = 
1/(time of last receive and multicast).  As the camera server transmitted, the dog’s image 
was made more and less complex by putting a piece of white paper in front of the camera.  
The graph made using the 860 data points collected is shown in Figure 10:   

Frames Per Second vs. JPEG Size
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Figure 10: FPS vs. JPEG size for camera server 
 

The relationship of this graph was hypothesized to be: FPS α 1/JPEG size.  The 
regression of the graph supports this, since its estimated function is close to 
FPS=1/(JPEG size), and the R2 is above 0.9.  The graph also shows the limits of the FPS: 
the camera works between approximately 4 and 13 frames per second.  Four FPS is not 
very fast, and certainly does not produce streaming video, but it is much better than the 1 
to 2 FPS achieved in the previous dog camera system design. 
 
 
5. DOG CONTROL AND MONITORING SYSTEM: CLIENT 
 
5.1 Client Basic Design 
 

Most of the design and features of the client program come directly as a 
consequence of the design and control flow of the server, but several important features 
and design concepts should be emphasized.  As mentioned earlier, the client is a 
Microsoft Windows program written in C# (with Visual Studio .NET) for the new .NET 
framework.  The client has a main window where the user can specify the dog and 
function (blob vision, etc.) desired, and a new window for this will be created.  The client 
is multithreaded, spawning new threads for each output type service (e.g., a new thread is 
created to handle the continuous receiving and displaying of data from a blob observer, 
camera, or output server socket), so the main thread is not over-burdened.  When 
exceptions are caught or error messages are sent from the server, a message box showing 
that error is displayed, and the window it came from is shut down (along with any 
threads).  Screen shots of the main window and some other windows are in Appendix B. 
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The input window has a text box for writing commands and buttons to send 

commands to the server and clear the text box.  The input window can save and load 
scripts stored in .txt files.  The output window has a read-only text box that shows the 
output text from the dog.  It can also save the output of the dog to a .txt file. 

 
 The blob observer, camera, and remote all have user controls created to handle 
these particular graphics displays.  Each one uses the .NET framework’s System.Drawing 
library and its Graphics class.  For the blob observer, for each blob a FillRectangle and a 
Rectangle (for black outline) are drawn in the user control window (see Section 2.4).  For 
the camera observer, the JPEG data are read into an array, which is read into a Stream 
object, which is read into an Image object, which is then displayed.  The network 
transmissions and these steps account for the almost one-second delay between the time 
an image is captured by the camera and when it shows up on the client window. 
 
5.2 Remote Control Client 
 

The fifth client window is the remote control (see Appendix B).  This program 
connects to both the input server and camera server, allowing the user to navigate the dog 
around a room.  Certain keys are bound to sending specific commands to the dog (using 
callbacks).  Thus there are keys to make the dog go forward, backward, right, and left, 
and to turn right and left.  Also, if the user clicks on a certain point in the camera image, 
the program takes the position of that click and computes what command it should send 
to the dog to have it point the camera in that direction. 

 
 To compute this value requires understanding how the dog is commanded to 
move its head.  A command called PointHead has three parameters: the x, y and z (in 
mm) coordinates (body’s coordinate system) of the object that the dog should try to look 
at.  For the remote, the dog is commanded to look at an object 1 meter away at the 
azimuth and elevation where the screen was clicked.  Calculating the point head 
parameters requires two steps.  First, the x, y, and z coordinates of the camera vector are 
calculated for the dog’s head’s coordinate system.  Second, these coordinates are 
transformed into the dog’s body’s coordinate system. 
 

The distance in u and v (pixels) from the center point of the camera to the click 
point are found.  The focal length of the camera is 161 pixels.  Thus a vector from the 
camera center to the click point is created (see Figure 11).  The azimuth (Φ) and elevation 
(Θ) of this vector are calculated from u, v, and the focal length. 
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Figure 11: “Click” vector from camera to image diagram 
 
Φ = ArcTan(u/161) 
Θ = ArcTan(v/(u2 + 1612)1/2) 
      

Another vector in this same direction, only 1 meter in length, is the vector of the 
new point where the dog should look.  The azimuth and elevation are used to find the x, 
y, and z coordinates of the end of this vector in the head’s coordinate system. 

 
Xhead = 1000*Cos(Θ)*Sin(Φ)    
Yhead = 1000*Cos(Θ)*Cos(Φ) 
Zhead = 1000*Sin(Θ) 

 
The head is at a certain azimuth and elevation relative to the dog’s body 

coordinate system.  This azimuth and elevation can easily be determined by knowing the 
x, y, and z coordinates in the body’s coordinate system of the last PointHead command.  
These angles are used to translate the new PointHead coordinates from the head’s 
coordinate system to the body’s coordinate system. 

 
Xbody = Xhead*Cos(Az.) + Yhead*Sin(Az.)*Cos(El.) - Xhead*Sin(Az.)*Sin(El.) 
Ybody = -Xhead*Sin(Az.) + Yhead*Cos(Az.)*Cos(El.) – Zhead*Cos(Az.)*Sin(El.) 
Zbody = Yhead*Sin(El.) + Zhead*Cos(El.) 

 
The only factor unaccounted for is the pitch (dog twists its head).  The previously 

stated algorithm works on the assumption that in order to look at a point the dog turns 
and raises or lowers its head, but does not twist it.  This is only true for small azimuths 
and elevations.  For large angles the dog’s head twists and the algorithm breaks down.  
Two measures correct this:  the angles to which the dog can be commanded to move its 
head can are limited, and if a problem occurs the “look front” button can be pressed, 
which will reset the dog to look forward. 

 
6. DISCUSSIONS AND CONCLUSIONS 
 

The motion calibration system developed here may not be precise enough and 
easy enough to use for the required needs.  The system worked well only for short-range, 
repetitive motions such as walks and kicks.  One problem is that the NOB itself does not 
have a large range.  This could be fixed by adding an extended range transmitter, but then 
there is the problem of wires.  Even if a large area can be covered the dogs cannot be 
allowed to move anyway they wish, because they will become tangled in the cords.  
Wireless sensors can be obtained, but then the magnetic interference from the dog’s 
motors will probably interfere with the transmissions. 
 

The motion calibration system does do a good job at discovering major trends in 
the dog’s movements, such as discovering that the dog did not turn precisely around the 
end of its head.  It can also tell if the calibration factor for a motion is greatly off, but 
between natural inconsistencies in movement, uncertainty, interference from the dog’s 
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motors, and the somewhat crude system (using the ruler) to counteract this, precise 
results about the dog’s motions are probably not obtainable. 
 

The server/client system does offer some valuable tools.  This system is a good 
basic platform for debugging the Aibos.  The existing client already has many features 
that make it a valuable for system debugging, and these tools can easily be added to. 
 
7. FUTURE WORK AND RECOMMENDATIONS 
 

The motion calibration system has produced some good results, but has not 
reached its full potential and may never do so.  Given the facts of limited system range 
and motor interference, the NOB does not seem to be the best choice for a positioning 
system.  Given the time and effort required to set up the extended range transmitter and 
perhaps get wireless sensors, it may be better to try another positioning system.  It is also 
now clear though, that there are great benefits to having a positional system especially if 
it is integrated with the server system. 
 

There is clearly great potential in the server system.  The infrastructure and 
libraries are there to easily add servers for other types of sensory outputs (such as sound 
or positional information from some external device).  There is also great potential for 
creating more complex and useful clients (such as the remote control) that interact with 
multiple servers.  Examples include a better color mapping system that could interact 
with the input, camera, and blob servers to allow for easier creation of color maps, and 
creation of a program for teaching the dogs where they are on the field that would interact 
with the positional, input, and output servers. 
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10. APPENDIX A: CALIBRATION GRAPHS 
 

 
Figure 1: Forward motion calibration 
(single linear regression). 
 

 
Figure 2: Side motion calibration (single 
linear regression). 
 

 
Figure 3: Turn calibration (single linear 
regression). 

 
Figure 4: Forward motion calibration 
(positive and negative linear 
regressions). 
 

 
Figure 5: Side motion calibration 
(positive and negative linear 
regressions). 
 

 
Figure 5: Side motion calibration 
(positive and negative linear 
regressions). 
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11. APPENDIX B: CLIENT PROGRAM SCREEN SHOTS 
 

 
 
Figure 1: Picture of main window and sub-windows for client program. 
 
 

 
 
Figure 2: Window of input client program. 
 
 

 
 
Figure 3: Window of output client program. 
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Figure 4: Window of remote control client program. 
 
 


