
 1

Technical Report TR-CST17OCT03

University of Pennsylvania
Center for Sensor Technology

Philadelphia, PA 19104

SUNFEST REU Program

IMPLEMENTATION OF THE ENIAC ACCUMLATOR AND
CYCLING UNIT ON A FIELD PROGRAMMABLE GATE ARRAY

(FPGA)

NSF Summer Undergraduate Fellowship in Sensor Technologies
Emily Rose Blem (Mathematics and Engineering) – Swarthmore College

Advisor: Dr. Jan Van der Spiegel

ABSTRACT

An accumulator and cycling unit from the Electronic Numerical Integrator and
Calculator (ENIAC) are implemented on a Field Programmable Gate Array (FPGA). The
FPGA implementation is not architecturally identical to the original ENIAC, but the
original architectural design is maintained where possible. The design maintains decimal
number representation, ring counters to increment numbers, and ten different clocks to
coordinate various accumulator functions. The implementation is a preliminary step in
the design of a series of FPGAs that will include a constant transmitter, three
accumulators, be connected to panels similar to those of the original ENIAC and be an
exact replica in the programmer's experience.

 2

Table of Contents

IMPLEMENTATION OF THE ENIAC ACCUMLATOR AND CYCLING UNIT ON A
FIELD PROGRAMMABLE GATE ARRAY (FPGA)
Emily Rose Blem (Mathematics and Engineering) – Swarthmore College
Advisor: Dr. Jan Van der Spiegel

1 INTRODUCTION ..3

1.1 Basic ENIAC Architecture ..3
1.2 VHDL ..4
1.3 Project Goals ..4

2 IMPLEMENTATION ..5
2.1 Clock Divider..5
2.2 Control Unit ..6
2.3 Cycling Unit ...6
2.4 Accumulator ...8

2.4.1 Start-up ..9
2.4.2 RAM ...9
2.4.3 Receiver ..9
2.4.4 Transmitter ..11
2.4.5 PM Unit ...12
2.4.6 LEDs ...12

2.5 Constant Transmitter ...12
3 IMPLEMENTATION ON CHIP ...13
4 RESULTS ..16
5 DISCUSSION AND FUTURE WORK ...18
6 CONCLUSIONS ..19
7 ACKNOWLEDGEMENTS ...19
8 REFERENECES ..19
9 APPENDICES ...20

 3

1. INTRODUCTION

Completed in 1946, the ENIAC (Electronic Numerical Integrator and Calculator)
was the first general use electronic computer. It was re-created in 1997 on a silicon chip
using CMOS technology at Moore School of Electrical Engineering at the University of
Pennsylvania, and this paper explores implementation of the ENIAC on a series of Field
Programmable Gate Arrays (FPGAs). The accumulator and cycling units have been
implemented on an FPGA. The FPGA implementation is not architecturally identical to
the original ENIAC, but the original architectural design is maintained where possible.
The series of FPGAs will be connected to panels similar to those of the original ENIAC
and be an exact replica in the programmer's experience. While the ENIAC-on-a-Chip
demonstrated technological advances over the past 50 years, the FPGA implementation
allows users to program as if they were interacting with the original ENIAC and serves as
a valuable historical teaching tool.

The original ENIAC (Electronic Numerical Integrator and Calculator) was

introduced as a tool for ballistics calculations as well as the first electronic general use
computer. It was originally designed to calculate weapons firing tables for the Ballistics
Research Laboratory during World War II. However, it was not completed in time for
this purpose, and its first calculations were for nuclear research. This original ENIAC
filled a room that was approximately 1800 square feet and contained thousands of
components. The computer broke down an average of once every 5.6 hours, mostly
because of its more than 40,000 vacuum tubes [1, 2]. The ENIAC was dismantled upon
obsolescence, and the programming panels lent to various museums in celebration of the
advance represented by the ENIAC.

In 1997, a team at Penn reconstructed the ENIAC, preserving the original
architecture, onto a microchip as a tribute to the advances since the first computer. The
microchip reproduction did not, however, preserve the original programming interface
but instead required a software interface to program the chip. This paper describes a new
implementation of the ENIAC on a series of FPGAs (Field Programmable Gate Arrays)
to be controlled by panels similar to those used in the original ENIAC. FPGAs are logic
devices that can be programmed using either graphical schematics of logic gates or
VHDL code (described below). For this project, a Xilinx Spartan IIe FPGA was
programmed using VHDL code and the ISE 5 software package. The FPGAs were
interfaced with a custom-designed printed circuit board (PCB) for the input and output
functions. The project goal is to preserve as much of the original structure as possible
while maintaining the original user interface.

1.1 Basic ENIAC Architecture

A computer’s architecture encompasses all the decisions made in the design
process, such as number format, program structure, and data transfer system. The
ENIAC had 30 individual units coordinated by digit and pulse trunks, equivalent to
modern data and address buses. While modern architectures use a binary format to
express numbers, the original ENIAC used decimal numbers. Numbers were transmitted

 4

as pulses over the digit trunk, with one physical wire or line per digit. The digit trunk had
11 lines (wires), with 10 wires were for digits and a single wire or line for number sign
information. Twenty of the units were accumulators; they could add or subtract a number
from the number previously stored in the unit. Other units included a master
programmer, initiating unit, function generators, multipliers, a divider and square rooter,
a cycling unit, and input and output devices. The accumulator, cycling unit, and constant
transmitter are discussed in detail in Section 2.

1.2 VHDL

 VHDL is the acronym for Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language. It is a hardware description language supported by
software packages such as ISE to design circuitry for implementation on logic devices.
Logic devices are used to hardwire a program rather than implementing a software
program on a general purpose platform. Logic circuit layouts were originally designed
by hand and then built from individual components. The design process then shifted to
drawing schematics with logic gates on a computer, and VHDL was eventually
introduced to allow the user to program a logic device (FPGA in this case) using a low-
level programming language. The VHDL compiler converts code into an arrangement of
logic gates that the computer can then program onto a logic device. VHDL code is clean,
portable, fast to design, and easy to simulate.

 The top layer of a system designed using VHDL contains port statements for
each entity that makes up the system. The output of one entity is connected to the input
of another through the assignment of both the input and output to the same signal.
Signals are declared within entities (or within the top-level port statement) and act like
wires between components. Port statements allow entities to be connected to each other
and to outside inputs and outputs.

 Within an entity, there is a port statement and an architecture. The entity port
statement declares inputs and outputs. The entity architecture contains the code that
affects entity outputs. Since VHDL is a hardware description language, it acts like a
circuit: all lines of code are run concurrently. Sequential statements, like those in most
software programming languages, can be run within processes. Processes are updated
each time that one of the variables upon which they are dependent changes, and generally
contain a series of if statements. If statements can be dependent upon events in the
variable value; they are run once when a change is detected in the variable. If a variable
is used on the rising or falling edge, it is considered a clock. Each process can check for
events in only one variable (although it can check the value of many variables), and
variables can be modified within only one process.

1.3 Project Goals

The design constraints for the ENIAC reconstruction require maintenance of the
spirit of the original architecture. Each of the original units of the ENIAC is designed in
a separate VHDL file, to be implemented on a separate FPGA chip. FPGA chips have a

 5

limited number of input and output lines, and to minimize the lines required, a cycling
unit is implemented on each chip. The control unit produces a synchronizing clock and
pulse, which are transmitted to each unit for pulse generation. The 10 different signals
produced in the cycling unit are, as in the original ENIAC, used to control different
processes. The project’s final product will be a constant transmitter, cycling unit,
initiating unit, and three accumulators implemented on FPGAs with an interface of
switches and dials very similar to the original ENIAC. The paper below describes
implementation of a clock divider, control unit (part of the initiating unit), cycling unit,
and accumulator on a single FPGA as a preliminary step in the project.

2. IMPLEMENTATION

 The design implemented on the FPGA has nine components. The clock divider
slows down the oscillator included on the Digilent Digilab Board. The control unit starts
and stops the clock provided to the cycling unit based on external operation mode
settings. The cycling unit generates the pulse train. The start up unit reads in switches,
saves their settings to RAM, and takes care of other output functions. The receiver
updates digit values based upon received pulses and switch settings, which are displayed
by the LED unit in real time. The sign unit keeps track of the current sign and the
transmitter converts the values stored in digit registers to pulses on the digit trunks.
Interaction between components is shown in Figure 1 and individual components are
described in detail below.

Clock
Divider

Control
Unit

Cycling
Unit

Receiver

Transmitter

Sign
Unit

Start
Up RAM

LED

Clock
Divider
Clock

Divider

Control
Unit

Control
Unit

Cycling
Unit

Cycling
Unit

ReceiverReceiver

TransmitterTransmitter

Sign
Unit
Sign
Unit

Start
Up

Start
Up RAMRAM

LEDLED

Figure 1: Interaction between units of the accumulator. Yellow lines are internal connections and blue lines
are input and output lines.

2.1 Clock Divider

The ENIAC ran at 5000 addition cycles per second, or about 100 kHz, where one
addition cycle is 20 pulses long. The Xilinx IIe FPGA is mounted on a Digilab II XL
board with a 50 MHz oscillator. To make the LED display easier to follow, the clock

 6

was slowed down to 10 pulses per second with a clock divider. The clock divider uses a
counter to slow down the clock and preserves a 50% duty cycle.

2.2 Control Unit

The original ENIAC had one cycling unit that provided a pulse train to all other
units. To minimize input and output connections between chips, the FPGA
implementation generates a pulse train in each unit. The units are synchronized using a
control unit that outputs the clock used by the cycling units in each accumulator, based
upon the operation mode. The ENIAC has three operation modes: continuous, addition
cycle, and pulse mode. Continuous mode is most commonly used for actual
computations, while the other two modes are for debugging purposes. Pulse mode
proceeds pulse by pulse, and the user must push an advance button between each pulse.
Addition cycle mode runs for 20 pulses and then waits for the user to push the advance
button before proceeding to the next 20-pulse cycle. The control unit starts and stops the
output clock based upon these three modes and also outputs a synchronizing pulse once
per addition cycle (at the same time as the cpp, central programming pulse) to ensure all
units are at the same place in the cycle. The control unit uses a combination of “if”
statements and counters to operate in the correct mode and output synchronization pulses
at the correct time.

2.3 Cycling Unit

The ENIAC’s cycling unit generates a pulse train with 10 individual signals. The
pulse train is available to each unit of the system, and each signal acts as a clock to
trigger internal operations. To minimize input and output connections in the FPGA
implementation, each unit generates its own pulse train, using a synchronized clock, once
per cycle pulse from the control unit (described above). The cycling unit is a state
machine with 100 individual states, divided into 20 main states with five sub states each.
The 20 main states are based upon the partition of the original ENIAC’s pulse train into
20 time divisions, as shown in Figure 2 below. Pulses do not, however, necessarily occur
at the beginning of one of these 20 divisions. The further division of each main state into
five sub states provides the necessary resolution to produce a pulse train identical to the
original. Pulses are generated by setting signals high during some sub states and low
during others.

The cycling units on each unit are not identical to that of the original ENIAC. Since
the operating modes are taken care of by the control unit, the individual control units do
not have operating mode controls built into them. They do, however, look for the
synchronizing pulse from the control unit. The synchronizing pulse arrives at the same
time that the cycling unit is generating the cpp, and the cycling unit waits until the
reception of the synchronizing pulse before proceeding. The accumulator does not
require four of the clocks produced by the cycling unit (4P, 2P, 2'P, and 1P), and space
constraints prompted their removal from the cycling units designed for the accumulators.
The constant transmitter will, however, require these four clocks, and the cycling unit for

 7

the constant transmitter contains those pulses. The clocks used in the accumulator are
described below:

• 10P – The tenp clock cycles through each digit register during digit transmission.
• 9P – The ninep clock is used for digit transmission, reception, and sign unit

operation. The ninep clock is gated to transmit the correct number of pulses in the
transmitter, is monitored to check for incoming pulses in the receiver, cycles the
sign unit when the number being received is negative, and is gated to transmit
ninep pulses on the sign line of the digit trunk when a negative number is
transmitted.

• 1'P – The onepprime clock is used to correct numbers sent in nine’s complement.
It is either added to the least significant digit of the number being transmitted by
the transmitter, or to the unit’s digit upon reception if the clear correct switch is
set for the current program.

• cpp – The cpp, or central programming pulse, synchronizes program flow. It is
generated by both the cycling unit and the control unit. Since the control unit is
specific to the FPGA implementation, it was not used in the original ENIAC. The
cpp generated by the control unit is called “synchpulse.” The cycling unit on each
accumulator waits for the synchpulse before generating its own cpp. This keeps
all cycling units synchronized. The cpp generated by the cycling unit also waits
for reception of a cpp from the last active unit. The line on which this cpp is
received indicates which program to use, and ensures that each unit waits for the
last operation to complete before beginning a new operation.

• ccg – The ccg, or clear correct gate, lasts seven pulse cycles and allows carries to
occur after receiving pulses.

• rp – The rp, or reset pulse, is used to reset various registers and prepare for the
next cycle.

Figure 2: Pulse trains [1].

 8

2.4 Accumulator

The original ENIAC used a set of 10 vacuum tubes for each of 10 digits. The unit
is initialized with the first tube on and all others off, to represent zero. If a digit pulse is
received, the first tube is turned off and the second is turned on, to represent a 1. The
FPGA implementation uses a 10-bit register to represent these 10 vacuum tubes; zeros
represent off and ones represent on. Numbers are transmitted between units on a digit
trunk. The digit trunk has 11 wires: one for each of the 10 digits and one for the plus or
minus setting. Digits are transmitted using the corresponding number of pulses; a 3
would be transmitted by sending three pulses. The plus or minus line transmits nothing if
the number is positive and transmits 9 pulses if the number is negative.

The accumulator has 34 switches on a panel similar to that shown in Figure 3.
The significant digit switch goes from 0 to 10 and allows the user to select how many
significant digits the accumulator uses. If the selective clear switch is turned on and the
accumulator receives a selective clear signal from the initiating unit, the accumulator
resets its digit registers according to the significant digits setting. Twelve programs can
be set on each accumulator. Each program has an operation switch, which can be set to
receive from one of five ports, transmit from one of two ports (or both), or do nothing.
Each program also has a clear correct switch. If the clear correct switch is set, the
accumulator will send the 1'P pulse to the unit’s digit if in the receiving mode and clear
the accumulators at the end of cycle if in the transmitting mode. Eight of the programs
can be set to repeat up to nine times.

Figure 3: Accumulator panel [1].

The FPGA implementation of the accumulator has five components. The start-up
component executes the initialization cycle by reading in switch settings, setting the
RAM (random access memory), and resetting registers. The receiver shifts digit registers
as digit pulses are received. The transmitter produces digit pulses according to the values
stored in the digit registers. The PM Sign Unit keeps track of the sign of the stored
number (plus or minus), and the LED component continuously updates the LEDs to

 9

reflect the number currently stored in each digit register. Interaction between the units is
shown in Figure 1.

2.4.1 Start-up

When the FPGA system is turned on, the start-up unit runs an initialization cycle.
The initialization cycle stores the setting of each switch into memory. The start-up unit
runs off the clock from the control unit (not one of the clocks generated by the cycling
unit). To read in switch settings, switches are scanned using a state machine with two
states per switch. The first state sends out the address of each switch and the second state
reads in the corresponding setting. The switch addresses are encoded and pass through
an off chip decoder, activating the correct switch. The setting is received through a data
bus that is used as program pulse input lines after the start-up cycle.

The selective clear and significant digit settings are stored in registers available to
other accumulator components. Program settings are saved in a 9-bit word. Operation
switch and repeat switch settings are encoded before saving to decrease RAM size. The
first bit represents the clear correct setting, the next four bits represent the operation
switch setting, and the last four bits represent the repeat switch settings. The resultant
word is saved into RAM at the address corresponding to the program number (for
example, settings for program one are saved to RAM address “0001”).

The off chip decoder is also used to send program pulse outputs and select one of

4 digit trunks. If the current program has completed, the receiver sets the done flag high.
The start up unit monitors the done flag, and emits the program pulse output on the
correct line to the off chip decoder during the cpp. When the done flag is not high and
the switches have been read in, the start up unit monitors the receive from register and
sets the corresponding line of the off chip decoder high, allowing the selection of the
correct digit trunk.

2.4.2 RAM

The random access memory (RAM) is dual port block RAM generated using the
Core Generator feature of the ISE software package. Port A is used to write to RAM
after setting the write enable bit high, and port B is used to read the RAM during
accumulator operation. The RAM has 13 addresses and each word in RAM is nine bits
long. The RAM address corresponds directly to the program being run. Words are
described in 2.4.1: the first bit corresponds to the clear correct setting, the next four bits
to the operation switch setting, and the last four bits to the repeat switch setting.

2.4.3 Receiver

 The receiver performs a variety of actions based upon the current place in the
pulse train and various register settings. The basic purpose of the receiver is to increment
digit registers as pulses are received. When the reception of a number causes a carry (a
digit is at 9 and a pulse is received), the receiver increments the appropriate digit. The

 10

receiver saves the values in the digit registers so that they can be transmitted on the next
cycle or a number can be added to or subtracted from them. Register clears according to
significant digit settings can occur in several different cases in the receiver, and a few
other housekeeping occur in the receiver. It is the largest component of the accumulator.

 The receiver contains four processes. One process uses the cpp as a clock and
is responsible for decrementing the repeat register and correctly setting the done flag.
One process runs off the ninep clock and sets a flag whenever there are incoming digit
pulses. The other two processes run off a faster clock, called ledclock, which was
originally designed to run the LEDs. Since each process can monitor for events in only
one clock, it was more convenient to run these two processes off the ledclock and use the
other clocks as flags more than clocks. One of these processes sets flags to take care of
carries generated when adding numbers in the accumulator. The other process contains
the actual digit value registers and all other functionality. The process increments digit
values when flags are set by either of the other two processes and runs various special
functions.

 The receiver uses the following signals as clocks: the cpp, registerreset,
onepprime, ccg, rp, and ninep. The current value of each digit, receive flag, and transmit
flag outputs to other units are updated independent of any clock.

 The receiver stores the current value of each digit. The numbers are stored as
10-bit registers and numbers transmitted as pulses over a digit trunk as described above.
The pulses are transmitted on the ninep clock. Each time the ninep clock goes high, one
process in the receiver checks each line of the digit trunk. If the line is high, a pulse is
being transmitted. The receiver sets “pshift” high, indicating that there is a shift due to a
pulse. It also checks the value of the last bit of the corresponding digit register. If the
last digit is high, the value currently stored is nine, and the pulse input should cause a
carry to the next digit. The corresponding flag bit is set.

 Carries, as necessitated by flags set while transmitting, are preformed while the
ccg gate is high in their own process. The process is run on the rising edge of the
ledclock and runs from the least significant digit to the most significant digit using a state
machine. If the flag for a particular digit is high, “fshift” is set high. The last bit of the
digit is checked, and if it is high, “cshift” is set high for the next digit. If “cshift” must be
set high, the next digit’s last bit is checked, and if it is high, the next “cshift” is set. The
process continues until no more carries are triggered. “fshift” is used for carries triggered
while receiving pulses from the digit trunk, while “cshift” is used for carries triggered
while implementing those carries. Flags from each state are reset in the next state.

 Each bit of all three shift flag registers are “or”ed together outside of any
process. If any of the bits are high, then the final shift register will have a high bit. The
main process increments the value stored in the registers based upon this final shift
register by shifting the first nine bits of the digit register to the right and moving the tenth
bit around to the first bit. The shift simulates the ring counters used to store and

 11

increment digits in the original ENIAC. The main process also controls all of the special
functionality of the accumulator.

 When the cpp is high, the receiver component resets flags, loads the next
program from memory if necessary, and sets the registerreset flag as necessary. The
registerreset flag is set if the current program is a transmit cycle and clear correct is set,
the accumulator’s selective clear switch is set and a selective clear signal is received from
the initiating unit, or the initialization cycle is being run. If register reset is high, each
digit is reset according to the accumulator’s significant digit setting. These settings occur
within the main receiver process. Program repetitions are monitored in a small separate
process that uses the cpp as a clock. On a cpp event, the repeat register is decremented.
When the register reaches 0, the repeat register resets and sets the done flag high.

 If clear correct is set high and the unit is receiving, the unit’s digit is
incremented by one on the 1'P clock. Negative numbers are incremented using nine’s
complement, but the accumulator works in ten’s complement. The transmitted signal is
usually corrected to ten’s complement according to the significant digits setting, but in
some cases this will not occur and the clear correct switch is set preemptively. In this
case, the unit’s digit is incremented (no matter the significant digit setting) and so the
option is ineffective unless the significant digit setting is 10.

 When rp is high, the data loaded from memory during cpp is distributed as
appropriate. The data is stored as a 9-bit word, which then must be split into three pieces
(clear correct, operation mode, and repeat switch setting). The first bit of the word is the
clear correct setting, the next four bits are the encoded operation mode setting, and the
last four bits are the encoded repeat switch setting. Flags receive, transmit, aout, and sout
are set according to the operation mode setting (aout and sout signal the output through
the A or S ports, for addition or subtraction). Register receivefrom is also set according
to the operation mode setting; if the accumulator is set to receive, then one of five receive
ports (alpha, beta, gamma, delta, or epsilon) must be chosen. The null operation (O on
the accumulator panel) is performed by setting both receive and transmit flags low. The
encoded words for each operation mode are shown in appendix 1. [3]

2.4.4 Transmitter

 The main function of the transmitter is to turn the zeros and ones in the digit
registers into a set of pulses to transmit on the digit trunk. Each digit register is shifted to
the right on the tenp clock until the ‘1’ in the register is reached. At that point, a
transmission flag is set and shifting continues to ensure that the number in the register
returns to its original state. The transmission flag is combined with the ninep clock so
that the number is correctly transmitted in nine’s complement. If the number is positive,
the nine’s complement equivalent is just the number, so a 3 would be transmitted as three
pulses. However, on transmission of a negative number, nine minus the digit value
pulses are transmitted, with one pulse added to the least significant digit on the
onepprime signal; it is thus transmitted as 9999999999 – the number + 1. In some cases,
addition of the onepprime pulse is missed by the transmitter. Programmers set the clear

 12

correct switch on the receiving accumulator in anticipation of this mistake. This the only
function preformed by the transmitter.

2.4.5 PM Sign Unit

 The plus-minus unit tracks the sign of the number stored in the accumulator.
On transmission of a negative number, it sends nine pulses on the sign line of the digit
trunk. The nine pulses change the sign of the receiving plus minus unit nine times, so the
sign is flipped upon completion. The unit gates the ninep clock so that no pulses come
out on the sign line if the number being transmitted is positive. If the most significant
digit in the accumulator generates a carry, generating overflow, the sign unit flips. The
overflow could be due to a true overflow, but is more likely the result of a subtraction
using tens complement. In the case of a subtraction, the correct answer is produced by
switching the sign of the number. If the sign of an operation is unexpected (for example,
adding two numbers produces a negative number), a true overflow occurred. [3]

2.4.6 LEDs

 The LED display serves no purpose in the actual accumulator function. It is,
however, an important debugging tool, and a similar display, using lamps behind halved
ping pong balls, was present in the original ENIAC. The LED display is updated in real
time with the current value of each digit register. Each column of the display represents a
digit, and each row represents a value from zero to nine. The LED unit scans through
each column and determines the value of the corresponding digit. It then selects the row
corresponding to that value. The column and row address are then output to light the
correct LED. To prevent the row value being output before the column value, or vice
versa, the column value is set to a dummy address, the row value is set, and then the
column is set correctly. The LED unit runs at a clock 10 times fast than the cycling unit,
so that all 10 digits (columns) can be updated during each cycle and the displayed digit is
the value currently stored.

 Two additional LEDs were added to the board, but are not controlled by the
LED unit. One LED lights up when the number stored in the accumulator is negative,
similar to a light on the original ENIAC. The other LED lights up when a program
output pulse is emitted and is included for debugging and demonstration purposes. These
LEDs direct outputs of the sign and start up components, respectively.

2.5 Constant Transmitter

 The constant transmitter allows the programmer to load a constant value
directly to an accumulator by setting a variety of switches. The value indicated by
reading in the switches is then generated using a combination of the 1P, 2P, 2'P, and 4P
pulses. The constant transmitter can be generated using combinational logic in VHDL.

 The constant transmitter has two panels. One panel is used to choose the digit
output terminal and the other to choose the constant. The constant is chosen by setting

 13

between five and twenty dials. Each dial has the values zero through nine and represents
a digit of the constant. The dials are arranged in groups of five, and the number to be
transmitted can be composed from some combination of those groups. [1]

3. IMPLEMENTATION ON CHIP

 The final implementation will be on a series of FPGAs with large panels similar
to those of the original ENIAC. To test the work performed thus far, a PCB was
designed to interface with a Xilinx IIe chip mounted on a Digilent Digilab II XL circuit
board by Zheng Yang of the University of Pennsylvania. FPGA pins were assigned using
the Digilent instruction manual and addresses for switches currently on the board are
shown in appendix 2. [4]

 The PCB board is designed for testing purposes, and does not include the
functionality of the full accumulator panels. The board has four program mode switches,
four clear correct switches, and two repeat switches, so it can run four different programs,
two with repeat capabilities. It has two transmit ports (for each addition and subtraction,
like the original ENIAC) and four receive ports (as opposed to the ENIAC’s five). It has
ports to transmit and receive coordinating cpps. There is a significant digits dial (with
choices from 0 to 9) and a selective clear switch. Nine LED banks with 10 LEDs each
display the value currently held in the accumulator. Two additional LEDs give the
current sign of the accumulator value and the current status of the program pulse output
line. The PCB board is shown connected to the Digilab board in Figure 4, and the I/O
structure is shown in Figure 5.

 The Spartan II FPGA has 96 input and output pins, but the full ENIAC
accumulator panel requires over 100 input and output lines. Using encoded signals and a
shared data bus drastically decreases the number of lines, and thus the number of pins,
required to implement the design. The decoder shown in Figure 6 performs the switch
selection, digit trunk input selection, and program pulse output depending upon the
current cycle. The decoder takes a 4-bit binary address and converts it to one of 16
choices.

 During the start-up cycle, the start-up unit scans through the addresses of all the
switches and outputs them one at a time through the decoder. When a switch’s address is
output by the decoder, that switch becomes active. The switch’s data then floods the data
bus and is input to the FPGA. When the next switch address is selected, the last switch
becomes inactive, the new switch becomes active, and the correct data is received. The
significant digits switch, four operation mode switches, two repeat switches, and four
clear correct switches are accessed in this manner. The significant digits switch has 10
options, the operation mode has eight options, and the repeat switches have 10 options;
their outputs are encoded to four bits within each switch. Each clear correct switch has
only two options (high or low), but all four are accessed at the same time and so require
all four input lines. The selective clear switch does not use this system, but is directly
input to the FPGA as it has only two options (high or low).

 14

 During receive cycles, the receiver unit of the accumulator pulls down the
current program’s settings from RAM and determines the digit trunk from which to
receive digit pulses. It then outputs the address of that digit trunk to the decoder. The
decoder sends an output enable signal to the correct digit trunk based upon that address.
The output enable signal allows the data from that digit trunk to reach the digit trunk data
bus. All four receive digit trunks use the same pins into the FPGA. However, only one
output enable can be active at a time, and thus only one digit trunk’s data arrives per
cycle. Two pins output program output pulses at the end of a program to activate the next
program; there are only two program output pins, as only programs with repeat switches
send the program output pulses. The program pulse output pin for program four has been
connected to an LED for debugging and demonstration. The decoder also has two empty
output lines; one of these lines must be selected when none of the other functions are
desired.

 The data bus for the switches serves an additional purpose. After the switches
have been scanned and their values stored, the buffer shown in the figure is activated,
allowing the program pulse input lines to use the data bus. When a program pulse input
is received on one of the four lines, it uses the data bus. The LEDs have eight output
lines: four for column selection and four for row selection. There is also an LED which
is on when the accumulator value is negative and off when it is positive. The additive
and subtractive digit trunk outputs each have 10 lines, 9 for digits and 1 for the sign.

 15

Figure 4: The board upon which the accumulator and cycling unit were implemented.

 16

Figure 5: Connections between the FPGA and other devices.

4. RESULTS

 The accumulator is fully functional in logical simulations, as shown in Figure 6.
Timing simulations and actual implementation upon the board are less successful. The
first units implemented on the board were the LED unit and clock divider. The LEDs can
be directly loaded with a number by replacing the connection with the receiving unit by a
constant value. During this implementation, the clock divider was used to decrease the
FPGA device. Slowing down the clock is very useful for debugging.

 The cycling unit and receiver were implemented next. The cycling unit is
required for operation of all units other than the LED unit. The accumulator was first set
to display a certain value and then reset itself at the end of each addition cycle, to ensure
the unit was functioning. The accumulator was then set to receive nine pulses per
addition cycle in the unit’s digit by tying the digit trunk to “00000000001,” where the
first bit represents the sign line, and the next 10 bits represent the 10 digits from digit 9
down to digit 0. The accumulator was thus expected to count by nines from zero to
9999999999.

 Counting on the unit’s digit was relatively simple to debug. The carry operation
was not as successful. The original design used a second set of ring counters to
increment digits when flags were high during the ccg. This design was very similar to
that of the original ENIAC, which simply let the carries run through the digits until the
value settled. On the FPGA, however, the design created race conditions, and values did
not have time to settle before they were tested. A single flag tended to cause the next
digit to increment twice, and carries that triggered additional carries were not recognized.
The current receiver layout presented the solution to this flaw. When counting by nines,
the accumulator functions smoothly up to the transition between 999 and 1000. Each

 17

time that a carry is triggered in the thousand’s digit, the accumulator stops for
approximately seven minutes. It then resumes and runs smoothly, with the correct
answer for the last operation. The accumulator was run for a long period of time to
observe the transition from 9999 to 10000. The transition again took approximately
seven minutes.

 The start-up unit was tested by reading the value of the switches into memory
and setting the LEDs to display values corresponding to the contents of RAM. The
original design led to race conditions between selecting a switch and reading the
corresponding input on the data bus, but using a state machine to step between choosing
switches and reading inputs eliminated the problem. The sign indicator LED and
program pulse output LED were added to the PCB to check for further functionality.
Subtraction was simulated tying the digit trunk input to “10000000001.” The first bit is
‘1,’ so the sign of the number is negative. The number being received is thus -9 (since
the pulse in the unit’s place is received 9 times per addition cycle). The LEDs correctly
displayed the value in the accumulator as 9 and the sign as negative. The clear correct
switches were tested by setting the digit trunk to “10000000000,” such that the unit was
receiving “negative zero,” while the clear correct switch was high. The accumulator
incremented the unit’s digit once per cycle on the onepprime pulse, as expected. The
program pulse output functionality was tested by setting the repeat switch to various
values and monitoring the program pulse output LED; it flashed after the correct number
of program repetitions.

 The sign LED and program pulse output LED provided unexpected debugging
information. A negative sign is represented by nine pulses during the first half of the
addition cycle (on the ninep clock), with the sign flipping each time a pulse is received.
The sign thus flips on the ninep, and the sign LED flashes on the ninep. When the
accumulator was allowed to run to the point that the seven minute delay occurs, the digit
LEDs again stopped. The sign LED, however, continued flashing. The program pulse
output LED continued flashing at the correct times. The accumulator, then, continues
functioning while the logic delay occurs.

Figure 6: Transmitter outputting pulses in a logic simulation. The value in the accumulator was obtained
by adding 6 to 999, and the output of 1005 on the digit trunk is shown, with the least significant digit line
shown on top.

 18

5. DISCUSSION AND FUTURE WORK

 Difficulties experienced in the project stemmed from the adherence to the
original pulse train and resultant timing issues. Running off the pulse train increased
program complexity and decreased productivity. The original ENIAC was more efficient
and fail proof than this implementation. The FPGA chip used for implementation was a
tight fit, and a larger chip would improve system performance.

 Space constraints were a constant limitation. The FPGA used has 30,000 logic
gates; devices with up to 500,000 gates are commonly available. The code was
optimized several times to fit onto the chip. The optimization included converting
behavioral statements (if…else statements) into combinational logic statements and
reducing the number of registers used in the code. The carry operation was originally
implemented in a separate entity than the receiver, but the two entities were combined to
reduce size. The optimization significantly reduced program size, but the chip still did
not contain sufficient space. After changing compiler preferences to emphasize
optimization during the translation and mapping processes, the entire implementation fit
onto the desired FPGA.

The problems experienced during the counting trial suggest timing will be an
issue. The reason for the seven minute delay after 110 addition cycles is unclear. The
sign and program pulse output LEDs show that the cycling unit, sign component, and
even some of the receiver continue functioning. When the significant digit setting is set
so that the second least significant bit is five upon start up, the seven minute delay occurs
after 110 cycles, not at the value 993. The delay appears unrelated to the cycling unit or
carry operation. The delay will cause major synchronization problems with the other
units as the program pulse output continues during the delay.

 Implementation with the full input and output capabilities will require several
changes to the program. The start-up unit, in which the switches are read, needs several
changes for the full implementation. It will need to be redesigned for the encoders,
decoders, and I/O structure of the full panels. The words stored to RAM are designed for
the full implementation, so RAM and the word convention associated with it will not
need to be modified. The receiver decodes information from RAM, and assumes the full
data format that will be needed for the full unit. Addresses will change with the full
implementation, but the current format should be sufficient for the required increased
input and output.

 The final product will include a system of three accumulators and a constant
transmitter. The constant transmitter was not designed for this report. The cycling unit
designed for the accumulators does not contain the 4P, 2P, 2'P, and 1P pulses that are
unique to the constant transmitter. However, the first cycling unit was designed to work
for any unit and thus includes these pulses. The constant transmitter should be a
relatively simple piece to design and implement. The interaction between three
accumulators will need to be thoroughly tested and debugged, as it has been performed
only in simulation for this report.

 19

6. CONCLUSIONS

 The work described in this paper achieved the original goals for the summer
project. Two accumulators were not hooked together, preventing full testing, and
debugging may still be necessary for the completed units. The project proved more
difficult than expected due to timing issues and unfamiliarity with the Xilinx platform.
Learning the architecture of the original ENIAC took a significant amount of time, but
the architecture is relatively straightforward. The architecture was designed for the
hardware available at the time. Implementing it on modern hardware was difficult, as the
concept of a system running off a set of 10 clocks is unusual and the FPGA is not
designed to run on more than one clock. Significant progress toward the final product
was made on this project. The final product will provide an excellent learning
opportunity for people to experience how the first general purpose computer was
programmed.

7. ACKNOWLEDGMENTS

 I would like to take this opportunity to thank my advisor, Professor Jan Van der
Spiegel, and Zheng Yang, the graduate student who helped me with this project,
including designing and building the PCB on which I implemented my work. I would
also like to thank the National Science Foundation for providing funding for my project
through the SUNFEST REU program. Finally, I would like to thank my fellow
SUNFEST student, Nicole Dilello, and my lab partner from previous projects, Seth
Jacobson, for their advice in various stages of the project.

8. REFERENCES

1. J. Van der Spiegel, J. Tau, T. Ala’ilima, and L. P. Ang, The ENIAC: History,
Operation, and Reconstruction in VLSI, The First Computers—History and
Architectures, MIT Press, eds. R. Rojas, 2000, p.121-178.

2. J. Tau, ENIAC on a Chip: The Monolithic ENIAC, Master’s Thesis, Philadelphia, PA,
University of Pennsylvania School of Engineering and Applied Science, December 1996.

3. A. Goldstine, Technical Description of the ENIAC, Part I, Philadelphia, PA,
University of Pennsylvania Moore School of Electrical Engineering, June 1, 1946.

4. Digilab 2 XL Reference Manual, Pullman, WA, Digilent, Inc., May 7, 2002, p. 6.

 20

9. APPENDICES

APPENDIX 1: OPERATING MODE ENCODING

Switch Value Port Mode Encoded
0 None Null 0000
1 Alpha Receive 0001
2 Beta Receive 0010
3 Gamma Receive 0011
4 Delta Receive 0100
5 Add Transmit 0101
6 Subtract Transmit 0110
7 Add and Subtract Transmit 0111

APPENDIX 2: DECODER SWITCH ADDRESSES

Address Function
0100 Clear Correct Switches
0101 Significant Digits Switch
1011 Program 4 Repeat Switch
1110 Program 4 Operation Mode Switch

