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ABSTRACT 
 

An accumulator and cycling unit from the Electronic Numerical Integrator and 
Calculator (ENIAC) are implemented on a Field Programmable Gate Array (FPGA).  The 
FPGA implementation is not architecturally identical to the original ENIAC, but the 
original architectural design is maintained where possible.  The design maintains decimal 
number representation, ring counters to increment numbers, and ten different clocks to 
coordinate various accumulator functions.  The implementation is a preliminary step in 
the design of a series of FPGAs that will include a constant transmitter, three 
accumulators, be connected to panels similar to those of the original ENIAC and be an 
exact replica in the programmer's experience.   
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1.  INTRODUCTION 
 

Completed in 1946, the ENIAC (Electronic Numerical Integrator and Calculator) 
was the first general use electronic computer.  It was re-created in 1997 on a silicon chip 
using CMOS technology at Moore School of Electrical Engineering at the University of 
Pennsylvania, and this paper explores implementation of the ENIAC on a series of Field 
Programmable Gate Arrays (FPGAs).  The accumulator and cycling units have been 
implemented on an FPGA.  The FPGA implementation is not architecturally identical to 
the original ENIAC, but the original architectural design is maintained where possible.  
The series of FPGAs will be connected to panels similar to those of the original ENIAC 
and be an exact replica in the programmer's experience.  While the ENIAC-on-a-Chip 
demonstrated technological advances over the past 50 years, the FPGA implementation 
allows users to program as if they were interacting with the original ENIAC and serves as 
a valuable historical teaching tool.   

 
The original ENIAC (Electronic Numerical Integrator and Calculator) was 

introduced as a tool for ballistics calculations as well as the first electronic general use 
computer.  It was originally designed to calculate weapons firing tables for the Ballistics 
Research Laboratory during World War II.  However, it was not completed in time for 
this purpose, and its first calculations were for nuclear research.  This original ENIAC 
filled a room that was approximately 1800 square feet and contained thousands of 
components.  The computer broke down an average of once every 5.6 hours, mostly 
because of its more than 40,000 vacuum tubes [1, 2].  The ENIAC was dismantled upon 
obsolescence, and the programming panels lent to various museums in celebration of the 
advance represented by the ENIAC. 
 

In 1997, a team at Penn reconstructed the ENIAC, preserving the original 
architecture, onto a microchip as a tribute to the advances since the first computer.  The 
microchip reproduction did not, however, preserve the original programming interface 
but instead required a software interface to program the chip.  This paper describes a new 
implementation of the ENIAC on a series of FPGAs (Field Programmable Gate Arrays) 
to be controlled by panels similar to those used in the original ENIAC.  FPGAs are logic 
devices that can be programmed using either graphical schematics of logic gates or 
VHDL code (described below).  For this project, a Xilinx Spartan IIe FPGA was 
programmed using VHDL code and the ISE 5 software package. The FPGAs were 
interfaced with a custom-designed printed circuit board (PCB) for the input and output 
functions.  The project goal is to preserve as much of the original structure as possible 
while maintaining the original user interface. 
 
1.1 Basic ENIAC Architecture 
 

A computer’s architecture encompasses all the decisions made in the design 
process, such as number format, program structure, and data transfer system.  The 
ENIAC had 30 individual units coordinated by digit and pulse trunks, equivalent to 
modern data and address buses.  While modern architectures use a binary format to 
express numbers, the original ENIAC used decimal numbers.  Numbers were transmitted 
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as pulses over the digit trunk, with one physical wire or line per digit.  The digit trunk had 
11 lines (wires), with 10 wires were for digits and a single wire or line for number sign 
information.  Twenty of the units were accumulators; they could add or subtract a number 
from the number previously stored in the unit.  Other units included a master 
programmer, initiating unit, function generators, multipliers, a divider and square rooter, 
a cycling unit, and input and output devices.  The accumulator, cycling unit, and constant 
transmitter are discussed in detail in Section 2. 
 
1.2 VHDL 
  
 VHDL is the acronym for Very High Speed Integrated Circuit (VHSIC) 
Hardware Description Language.  It is a hardware description language supported by 
software packages such as ISE to design circuitry for implementation on logic devices.  
Logic devices are used to hardwire a program rather than implementing a software 
program on a general purpose platform.  Logic circuit layouts were originally designed 
by hand and then built from individual components.  The design process then shifted to 
drawing schematics with logic gates on a computer, and VHDL was eventually 
introduced to allow the user to program a logic device (FPGA in this case) using a low-
level programming language.  The VHDL compiler converts code into an arrangement of 
logic gates that the computer can then program onto a logic device.  VHDL code is clean, 
portable, fast to design, and easy to simulate. 
 
 The top layer of a system designed using VHDL contains port statements for 
each entity that makes up the system.  The output of one entity is connected to the input 
of another through the assignment of both the input and output to the same signal.  
Signals are declared within entities (or within the top-level port statement) and act like 
wires between components.  Port statements allow entities to be connected to each other 
and to outside inputs and outputs.  
 
 Within an entity, there is a port statement and an architecture.  The entity port 
statement declares inputs and outputs.  The entity architecture contains the code that 
affects entity outputs.  Since VHDL is a hardware description language, it acts like a 
circuit: all lines of code are run concurrently.  Sequential statements, like those in most 
software programming languages, can be run within processes.  Processes are updated 
each time that one of the variables upon which they are dependent changes, and generally 
contain a series of if statements.  If statements can be dependent upon events in the 
variable value; they are run once when a change is detected in the variable.  If a variable 
is used on the rising or falling edge, it is considered a clock.  Each process can check for 
events in only one variable (although it can check the value of many variables), and 
variables can be modified within only one process. 
 
1.3 Project Goals 
 

The design constraints for the ENIAC reconstruction require maintenance of the 
spirit of the original architecture.  Each of the original units of the ENIAC is designed in 
a separate VHDL file, to be implemented on a separate FPGA chip.  FPGA chips have a 
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limited number of input and output lines, and to minimize the lines required, a cycling 
unit is implemented on each chip.  The control unit produces a synchronizing clock and 
pulse, which are transmitted to each unit for pulse generation.  The 10 different signals 
produced in the cycling unit are, as in the original ENIAC, used to control different 
processes. The project’s final product will be a constant transmitter, cycling unit, 
initiating unit, and three accumulators implemented on FPGAs with an interface of 
switches and dials very similar to the original ENIAC.  The paper below describes 
implementation of a clock divider, control unit (part of the initiating unit), cycling unit, 
and accumulator on a single FPGA as a preliminary step in the project. 

 
2.  IMPLEMENTATION 
 
 The design implemented on the FPGA has nine components.  The clock divider 
slows down the oscillator included on the Digilent Digilab Board.  The control unit starts 
and stops the clock provided to the cycling unit based on external operation mode 
settings.  The cycling unit generates the pulse train.  The start up unit reads in switches, 
saves their settings to RAM, and takes care of other output functions.  The receiver 
updates digit values based upon received pulses and switch settings, which are displayed 
by the LED unit in real time.  The sign unit keeps track of the current sign and the 
transmitter converts the values stored in digit registers to pulses on the digit trunks.  
Interaction between components is shown in Figure 1 and individual components are 
described in detail below.    
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Figure 1: Interaction between units of the accumulator.  Yellow lines are internal connections and blue lines 
are input and output lines. 
 
 
2.1 Clock Divider 
 

The ENIAC ran at 5000 addition cycles per second, or about 100 kHz, where one 
addition cycle is 20 pulses long.  The Xilinx IIe FPGA is mounted on a Digilab II XL 
board with a 50 MHz oscillator.  To make the LED display easier to follow, the clock 
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was slowed down to 10 pulses per second with a clock divider.  The clock divider uses a 
counter to slow down the clock and preserves a 50% duty cycle. 
 
2.2 Control Unit 
 

The original ENIAC had one cycling unit that provided a pulse train to all other 
units.  To minimize input and output connections between chips, the FPGA 
implementation generates a pulse train in each unit.  The units are synchronized using a 
control unit that outputs the clock used by the cycling units in each accumulator, based 
upon the operation mode.  The ENIAC has three operation modes: continuous, addition 
cycle, and pulse mode.  Continuous mode is most commonly used for actual 
computations, while the other two modes are for debugging purposes.  Pulse mode 
proceeds pulse by pulse, and the user must push an advance button between each pulse.  
Addition cycle mode runs for 20 pulses and then waits for the user to push the advance 
button before proceeding to the next 20-pulse cycle.  The control unit starts and stops the 
output clock based upon these three modes and also outputs a synchronizing pulse once 
per addition cycle (at the same time as the cpp, central programming pulse) to ensure all 
units are at the same place in the cycle.  The control unit uses a combination of  “if” 
statements and counters to operate in the correct mode and output synchronization pulses 
at the correct time. 
 
2.3 Cycling Unit 
 

The ENIAC’s cycling unit generates a pulse train with 10 individual signals.  The 
pulse train is available to each unit of the system, and each signal acts as a clock to 
trigger internal operations.  To minimize input and output connections in the FPGA 
implementation, each unit generates its own pulse train, using a synchronized clock, once 
per cycle pulse from the control unit (described above).  The cycling unit is a state 
machine with 100 individual states, divided into 20 main states with five sub states each.  
The 20 main states are based upon the partition of the original ENIAC’s pulse train into 
20 time divisions, as shown in Figure 2 below.  Pulses do not, however, necessarily occur 
at the beginning of one of these 20 divisions.  The further division of each main state into 
five sub states provides the necessary resolution to produce a pulse train identical to the 
original.  Pulses are generated by setting signals high during some sub states and low 
during others.  
  

The cycling units on each unit are not identical to that of the original ENIAC.  Since 
the operating modes are taken care of by the control unit, the individual control units do 
not have operating mode controls built into them.  They do, however, look for the 
synchronizing pulse from the control unit.  The synchronizing pulse arrives at the same 
time that the cycling unit is generating the cpp, and the cycling unit waits until the 
reception of the synchronizing pulse before proceeding.  The accumulator does not 
require four of the clocks produced by the cycling unit (4P, 2P, 2'P, and 1P), and space 
constraints prompted their removal from the cycling units designed for the accumulators.  
The constant transmitter will, however, require these four clocks, and the cycling unit for 
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the constant transmitter contains those pulses.  The clocks used in the accumulator are 
described below: 
 

• 10P – The tenp clock cycles through each digit register during digit transmission.  
• 9P – The ninep clock is used for digit transmission, reception, and sign unit 

operation.  The ninep clock is gated to transmit the correct number of pulses in the 
transmitter, is monitored to check for incoming pulses in the receiver, cycles the 
sign unit when the number being received is negative, and is gated to transmit 
ninep pulses on the sign line of the digit trunk when a negative number is 
transmitted. 

• 1'P – The onepprime clock is used to correct numbers sent in nine’s complement.  
It is either added to the least significant digit of the number being transmitted by 
the transmitter, or to the unit’s digit upon reception if the clear correct switch is 
set for the current program. 

• cpp – The cpp, or central programming pulse, synchronizes program flow.  It is 
generated by both the cycling unit and the control unit.  Since the control unit is 
specific to the FPGA implementation, it was not used in the original ENIAC.  The 
cpp generated by the control unit is called “synchpulse.”  The cycling unit on each 
accumulator waits for the synchpulse before generating its own cpp.  This keeps 
all cycling units synchronized.  The cpp generated by the cycling unit also waits 
for reception of a cpp from the last active unit.  The line on which this cpp is 
received indicates which program to use, and ensures that each unit waits for the 
last operation to complete before beginning a new operation.   

• ccg – The ccg, or clear correct gate, lasts seven pulse cycles and allows carries to 
occur after receiving pulses. 

• rp – The rp, or reset pulse, is used to reset various registers and prepare for the 
next cycle. 

 
Figure 2: Pulse trains [1]. 
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2.4 Accumulator 
 

The original ENIAC used a set of 10 vacuum tubes for each of 10 digits.  The unit 
is initialized with the first tube on and all others off, to represent zero.  If a digit pulse is 
received, the first tube is turned off and the second is turned on, to represent a 1.  The 
FPGA implementation uses a 10-bit register to represent these 10 vacuum tubes; zeros 
represent off and ones represent on.  Numbers are transmitted between units on a digit 
trunk.  The digit trunk has 11 wires: one for each of the 10 digits and one for the plus or 
minus setting.  Digits are transmitted using the corresponding number of pulses; a 3 
would be transmitted by sending three pulses.  The plus or minus line transmits nothing if 
the number is positive and transmits 9 pulses if the number is negative. 
 

The accumulator has 34 switches on a panel similar to that shown in Figure 3.  
The significant digit switch goes from 0 to 10 and allows the user to select how many 
significant digits the accumulator uses.  If the selective clear switch is turned on and the 
accumulator receives a selective clear signal from the initiating unit, the accumulator 
resets its digit registers according to the significant digits setting.  Twelve programs can 
be set on each accumulator.  Each program has an operation switch, which can be set to 
receive from one of five ports, transmit from one of two ports (or both), or do nothing.  
Each program also has a clear correct switch.  If the clear correct switch is set, the 
accumulator will send the 1'P pulse to the unit’s digit if in the receiving mode and clear 
the accumulators at the end of cycle if in the transmitting mode.  Eight of the programs 
can be set to repeat up to nine times. 
 

 
Figure 3: Accumulator panel [1]. 
 

The FPGA implementation of the accumulator has five components.  The start-up 
component executes the initialization cycle by reading in switch settings, setting the 
RAM (random access memory), and resetting registers.  The receiver shifts digit registers 
as digit pulses are received.  The transmitter produces digit pulses according to the values 
stored in the digit registers.  The PM Sign Unit keeps track of the sign of the stored 
number (plus or minus), and the LED component continuously updates the LEDs to 
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reflect the number currently stored in each digit register.  Interaction between the units is 
shown in Figure 1. 
 
2.4.1 Start-up 
 

When the FPGA system is turned on, the start-up unit runs an initialization cycle.  
The initialization cycle stores the setting of each switch into memory.  The start-up unit 
runs off the clock from the control unit (not one of the clocks generated by the cycling 
unit).  To read in switch settings, switches are scanned using a state machine with two 
states per switch.  The first state sends out the address of each switch and the second state 
reads in the corresponding setting.  The switch addresses are encoded and pass through 
an off chip decoder, activating the correct switch.  The setting is received through a data 
bus that is used as program pulse input lines after the start-up cycle.   
 

The selective clear and significant digit settings are stored in registers available to 
other accumulator components.  Program settings are saved in a 9-bit word.  Operation 
switch and repeat switch settings are encoded before saving to decrease RAM size.   The 
first bit represents the clear correct setting, the next four bits represent the operation 
switch setting, and the last four bits represent the repeat switch settings.  The resultant 
word is saved into RAM at the address corresponding to the program number (for 
example, settings for program one are saved to RAM address “0001”).   

 
The off chip decoder is also used to send program pulse outputs and select one of 

4 digit trunks.  If the current program has completed, the receiver sets the done flag high.  
The start up unit monitors the done flag, and emits the program pulse output on the 
correct line to the off chip decoder during the cpp.  When the done flag is not high and 
the switches have been read in, the start up unit monitors the receive from register and 
sets the corresponding line of the off chip decoder high, allowing the selection of the 
correct digit trunk. 

 
2.4.2 RAM 
 

The random access memory (RAM) is dual port block RAM generated using the 
Core Generator feature of the ISE software package.  Port A is used to write to RAM 
after setting the write enable bit high, and port B is used to read the RAM during 
accumulator operation.  The RAM has 13 addresses and each word in RAM is nine bits 
long.  The RAM address corresponds directly to the program being run.  Words are 
described in 2.4.1: the first bit corresponds to the clear correct setting, the next four bits 
to the operation switch setting, and the last four bits to the repeat switch setting. 

 
2.4.3 Receiver 
 
 The receiver performs a variety of actions based upon the current place in the 
pulse train and various register settings.  The basic purpose of the receiver is to increment 
digit registers as pulses are received.  When the reception of a number causes a carry (a 
digit is at 9 and a pulse is received), the receiver increments the appropriate digit.  The 
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receiver saves the values in the digit registers so that they can be transmitted on the next 
cycle or a number can be added to or subtracted from them.  Register clears according to 
significant digit settings can occur in several different cases in the receiver, and a few 
other housekeeping occur in the receiver.  It is the largest component of the accumulator. 
 
 The receiver contains four processes.  One process uses the cpp as a clock and 
is responsible for decrementing the repeat register and correctly setting the done flag.  
One process runs off the ninep clock and sets a flag whenever there are incoming digit 
pulses.  The other two processes run off a faster clock, called ledclock, which was 
originally designed to run the LEDs.  Since each process can monitor for events in only 
one clock, it was more convenient to run these two processes off the ledclock and use the 
other clocks as flags more than clocks.  One of these processes sets flags to take care of 
carries generated when adding numbers in the accumulator.  The other process contains 
the actual digit value registers and all other functionality.  The process increments digit 
values when flags are set by either of the other two processes and runs various special 
functions. 
 
 The receiver uses the following signals as clocks: the cpp, registerreset, 
onepprime, ccg, rp, and ninep.  The current value of each digit, receive flag, and transmit 
flag outputs to other units are updated independent of any clock.   
 
 The receiver stores the current value of each digit.  The numbers are stored as 
10-bit registers and numbers transmitted as pulses over a digit trunk as described above.  
The pulses are transmitted on the ninep clock.  Each time the ninep clock goes high, one 
process in the receiver checks each line of the digit trunk.  If the line is high, a pulse is 
being transmitted.  The receiver sets “pshift” high, indicating that there is a shift due to a 
pulse.  It also checks the value of the last bit of the corresponding digit register.  If the 
last digit is high, the value currently stored is nine, and the pulse input should cause a 
carry to the next digit.  The corresponding flag bit is set.    
 
 Carries, as necessitated by flags set while transmitting, are preformed while the 
ccg gate is high in their own process.  The process is run on the rising edge of the 
ledclock and runs from the least significant digit to the most significant digit using a state 
machine.  If the flag for a particular digit is high, “fshift” is set high.   The last bit of the 
digit is checked, and if it is high, “cshift” is set high for the next digit.  If “cshift” must be 
set high, the next digit’s last bit is checked, and if it is high, the next “cshift” is set.  The 
process continues until no more carries are triggered.  “fshift” is used for carries triggered 
while receiving pulses from the digit trunk, while “cshift” is used for carries triggered 
while implementing those carries.  Flags from each state are reset in the next state.  
 
 Each bit of all three shift flag registers are “or”ed together outside of any 
process.  If any of the bits are high, then the final shift register will have a high bit.  The 
main process increments the value stored in the registers based upon this final shift 
register by shifting the first nine bits of the digit register to the right and moving the tenth 
bit around to the first bit.  The shift simulates the ring counters used to store and 
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increment digits in the original ENIAC.  The main process also controls all of the special 
functionality of the accumulator. 
 
 When the cpp is high, the receiver component resets flags, loads the next 
program from memory if necessary, and sets the registerreset flag as necessary.  The 
registerreset flag is set if the current program is a transmit cycle and clear correct is set, 
the accumulator’s selective clear switch is set and a selective clear signal is received from 
the initiating unit, or the initialization cycle is being run.  If register reset is high, each 
digit is reset according to the accumulator’s significant digit setting.  These settings occur 
within the main receiver process.  Program repetitions are monitored in a small separate 
process that uses the cpp as a clock.  On a cpp event, the repeat register is decremented.  
When the register reaches 0, the repeat register resets and sets the done flag high. 
 
 If clear correct is set high and the unit is receiving, the unit’s digit is 
incremented by one on the 1'P clock.  Negative numbers are incremented using nine’s 
complement, but the accumulator works in ten’s complement.  The transmitted signal is 
usually corrected to ten’s complement according to the significant digits setting, but in 
some cases this will not occur and the clear correct switch is set preemptively.  In this 
case, the unit’s digit is incremented (no matter the significant digit setting) and so the 
option is ineffective unless the significant digit setting is 10.   
 
 When rp is high, the data loaded from memory during cpp is distributed as 
appropriate.  The data is stored as a 9-bit word, which then must be split into three pieces 
(clear correct, operation mode, and repeat switch setting).  The first bit of the word is the 
clear correct setting, the next four bits are the encoded operation mode setting, and the 
last four bits are the encoded repeat switch setting.  Flags receive, transmit, aout, and sout 
are set according to the operation mode setting (aout and sout signal the output through 
the A or S ports, for addition or subtraction).  Register receivefrom is also set according 
to the operation mode setting; if the accumulator is set to receive, then one of five receive 
ports (alpha, beta, gamma, delta, or epsilon) must be chosen.  The null operation (O on 
the accumulator panel) is performed by setting both receive and transmit flags low.  The 
encoded words for each operation mode are shown in appendix 1.  [3] 
 
2.4.4 Transmitter 
 
 The main function of the transmitter is to turn the zeros and ones in the digit 
registers into a set of pulses to transmit on the digit trunk.  Each digit register is shifted to 
the right on the tenp clock until the ‘1’ in the register is reached.  At that point, a 
transmission flag is set and shifting continues to ensure that the number in the register 
returns to its original state.  The transmission flag is combined with the ninep clock so 
that the number is correctly transmitted in nine’s complement.  If the number is positive, 
the nine’s complement equivalent is just the number, so a 3 would be transmitted as three 
pulses.  However, on transmission of a negative number, nine minus the digit value 
pulses are transmitted, with one pulse added to the least significant digit on the 
onepprime signal; it is thus transmitted as 9999999999 – the number + 1.  In some cases, 
addition of the onepprime pulse is missed by the transmitter.  Programmers set the clear 
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correct switch on the receiving accumulator in anticipation of this mistake.  This the only 
function preformed by the transmitter. 
 
2.4.5 PM Sign Unit 
 
 The plus-minus unit tracks the sign of the number stored in the accumulator.  
On transmission of a negative number, it sends nine pulses on the sign line of the digit 
trunk.  The nine pulses change the sign of the receiving plus minus unit nine times, so the 
sign is flipped upon completion.  The unit gates the ninep clock so that no pulses come 
out on the sign line if the number being transmitted is positive.  If the most significant 
digit in the accumulator generates a carry, generating overflow, the sign unit flips.  The 
overflow could be due to a true overflow, but is more likely the result of a subtraction 
using tens complement.  In the case of a subtraction, the correct answer is produced by 
switching the sign of the number.  If the sign of an operation is unexpected (for example, 
adding two numbers produces a negative number), a true overflow occurred.  [3] 
 
2.4.6 LEDs 
 
 The LED display serves no purpose in the actual accumulator function.  It is, 
however, an important debugging tool, and a similar display, using lamps behind halved 
ping pong balls, was present in the original ENIAC.  The LED display is updated in real 
time with the current value of each digit register.  Each column of the display represents a 
digit, and each row represents a value from zero to nine.  The LED unit scans through 
each column and determines the value of the corresponding digit.  It then selects the row 
corresponding to that value.  The column and row address are then output to light the 
correct LED.  To prevent the row value being output before the column value, or vice 
versa, the column value is set to a dummy address, the row value is set, and then the 
column is set correctly.  The LED unit runs at a clock 10 times fast than the cycling unit, 
so that all 10 digits (columns) can be updated during each cycle and the displayed digit is 
the value currently stored. 
 
 Two additional LEDs were added to the board, but are not controlled by the 
LED unit.  One LED lights up when the number stored in the accumulator is negative, 
similar to a light on the original ENIAC.  The other LED lights up when a program 
output pulse is emitted and is included for debugging and demonstration purposes.  These 
LEDs direct outputs of the sign and start up components, respectively. 
 
2.5 Constant Transmitter 
 
 The constant transmitter allows the programmer to load a constant value 
directly to an accumulator by setting a variety of switches.  The value indicated by 
reading in the switches is then generated using a combination of the 1P, 2P, 2'P, and 4P 
pulses.  The constant transmitter can be generated using combinational logic in VHDL. 
 
 The constant transmitter has two panels.  One panel is used to choose the digit 
output terminal and the other to choose the constant.  The constant is chosen by setting 
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between five and twenty dials.  Each dial has the values zero through nine and represents 
a digit of the constant.  The dials are arranged in groups of five, and the number to be 
transmitted can be composed from some combination of those groups. [1] 
 
3. IMPLEMENTATION ON CHIP 
 
 The final implementation will be on a series of FPGAs with large panels similar 
to those of the original ENIAC.  To test the work performed thus far, a PCB was 
designed to interface with a Xilinx IIe chip mounted on a Digilent Digilab II XL circuit 
board by Zheng Yang of the University of Pennsylvania.  FPGA pins were assigned using 
the Digilent instruction manual and addresses for switches currently on the board are 
shown in appendix 2. [4] 
 
 The PCB board is designed for testing purposes, and does not include the 
functionality of the full accumulator panels.  The board has four program mode switches, 
four clear correct switches, and two repeat switches, so it can run four different programs, 
two with repeat capabilities.  It has two transmit ports (for each addition and subtraction, 
like the original ENIAC) and four receive ports (as opposed to the ENIAC’s five).  It has 
ports to transmit and receive coordinating cpps.  There is a significant digits dial (with 
choices from 0 to 9) and a selective clear switch.  Nine LED banks with 10 LEDs each 
display the value currently held in the accumulator.  Two additional LEDs give the 
current sign of the accumulator value and the current status of the program pulse output 
line.  The PCB board is shown connected to the Digilab board in Figure 4, and the I/O 
structure is shown in Figure 5. 
 
 The Spartan II FPGA has 96 input and output pins, but the full ENIAC 
accumulator panel requires over 100 input and output lines.  Using encoded signals and a 
shared data bus drastically decreases the number of lines, and thus the number of pins, 
required to implement the design.   The decoder shown in Figure 6 performs the switch 
selection, digit trunk input selection, and program pulse output depending upon the 
current cycle.  The decoder takes a 4-bit binary address and converts it to one of 16 
choices.   
 
 During the start-up cycle, the start-up unit scans through the addresses of all the 
switches and outputs them one at a time through the decoder.  When a switch’s address is 
output by the decoder, that switch becomes active.  The switch’s data then floods the data 
bus and is input to the FPGA.  When the next switch address is selected, the last switch 
becomes inactive, the new switch becomes active, and the correct data is received.  The 
significant digits switch, four operation mode switches, two repeat switches, and four 
clear correct switches are accessed in this manner.  The significant digits switch has 10 
options, the operation mode has eight options, and the repeat switches have 10 options; 
their outputs are encoded to four bits within each switch.  Each clear correct switch has 
only two options (high or low), but all four are accessed at the same time and so require 
all four input lines. The selective clear switch does not use this system, but is directly 
input to the FPGA as it has only two options (high or low). 
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 During receive cycles, the receiver unit of the accumulator pulls down the 
current program’s settings from RAM and determines the digit trunk from which to 
receive digit pulses.  It then outputs the address of that digit trunk to the decoder.  The 
decoder sends an output enable signal to the correct digit trunk based upon that address.  
The output enable signal allows the data from that digit trunk to reach the digit trunk data 
bus.  All four receive digit trunks use the same pins into the FPGA.  However, only one 
output enable can be active at a time, and thus only one digit trunk’s data arrives per 
cycle.  Two pins output program output pulses at the end of a program to activate the next 
program; there are only two program output pins, as only programs with repeat switches 
send the program output pulses.  The program pulse output pin for program four has been 
connected to an LED for debugging and demonstration.  The decoder also has two empty 
output lines; one of these lines must be selected when none of the other functions are 
desired. 
 
 The data bus for the switches serves an additional purpose.  After the switches 
have been scanned and their values stored, the buffer shown in the figure is activated, 
allowing the program pulse input lines to use the data bus.  When a program pulse input 
is received on one of the four lines, it uses the data bus.  The LEDs have eight output 
lines: four for column selection and four for row selection.  There is also an LED which 
is on when the accumulator value is negative and off when it is positive.  The additive 
and subtractive digit trunk outputs each have 10 lines, 9 for digits and 1 for the sign. 
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Figure 4: The board upon which the accumulator and cycling unit were implemented. 
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Figure 5: Connections between the FPGA and other devices. 
 
4. RESULTS 
 
 The accumulator is fully functional in logical simulations, as shown in Figure 6.  
Timing simulations and actual implementation upon the board are less successful.  The 
first units implemented on the board were the LED unit and clock divider.  The LEDs can 
be directly loaded with a number by replacing the connection with the receiving unit by a 
constant value.  During this implementation, the clock divider was used to decrease the 
FPGA device.  Slowing down the clock is very useful for debugging.   
 
 The cycling unit and receiver were implemented next.  The cycling unit is 
required for operation of all units other than the LED unit.  The accumulator was first set 
to display a certain value and then reset itself at the end of each addition cycle, to ensure 
the unit was functioning.  The accumulator was then set to receive nine pulses per 
addition cycle in the unit’s digit by tying the digit trunk to “00000000001,” where the 
first bit represents the sign line, and the next 10 bits represent the 10 digits from digit 9 
down to digit 0.  The accumulator was thus expected to count by nines from zero to 
9999999999.   
 
 Counting on the unit’s digit was relatively simple to debug.  The carry operation 
was not as successful.  The original design used a second set of ring counters to 
increment digits when flags were high during the ccg.  This design was very similar to 
that of the original ENIAC, which simply let the carries run through the digits until the 
value settled.  On the FPGA, however, the design created race conditions, and values did 
not have time to settle before they were tested.  A single flag tended to cause the next 
digit to increment twice, and carries that triggered additional carries were not recognized.  
The current receiver layout presented the solution to this flaw.  When counting by nines, 
the accumulator functions smoothly up to the transition between 999 and 1000.  Each 
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time that a carry is triggered in the thousand’s digit, the accumulator stops for 
approximately seven minutes.  It then resumes and runs smoothly, with the correct 
answer for the last operation.  The accumulator was run for a long period of time to 
observe the transition from 9999 to 10000.  The transition again took approximately 
seven minutes. 
 
 The start-up unit was tested by reading the value of the switches into memory 
and setting the LEDs to display values corresponding to the contents of RAM.  The 
original design led to race conditions between selecting a switch and reading the 
corresponding input on the data bus, but using a state machine to step between choosing 
switches and reading inputs eliminated the problem.  The sign indicator LED and 
program pulse output LED were added to the PCB to check for further functionality.  
Subtraction was simulated tying the digit trunk input to “10000000001.”  The first bit is 
‘1,’ so the sign of the number is negative.  The number being received is thus -9 (since 
the pulse in the unit’s place is received 9 times per addition cycle).  The LEDs correctly 
displayed the value in the accumulator as 9 and the sign as negative.  The clear correct 
switches were tested by setting the digit trunk to “10000000000,” such that the unit was 
receiving “negative zero,” while the clear correct switch was high.  The accumulator 
incremented the unit’s digit once per cycle on the onepprime pulse, as expected.  The 
program pulse output functionality was tested by setting the repeat switch to various 
values and monitoring the program pulse output LED; it flashed after the correct number 
of program repetitions. 
 
 The sign LED and program pulse output LED provided unexpected debugging 
information.  A negative sign is represented by nine pulses during the first half of the 
addition cycle (on the ninep clock), with the sign flipping each time a pulse is received.  
The sign thus flips on the ninep, and the sign LED flashes on the ninep.  When the 
accumulator was allowed to run to the point that the seven minute delay occurs, the digit 
LEDs again stopped.  The sign LED, however, continued flashing.  The program pulse 
output LED continued flashing at the correct times.  The accumulator, then, continues 
functioning while the logic delay occurs. 
 

 
Figure 6: Transmitter outputting pulses in a logic simulation.  The value in the accumulator was obtained 
by adding 6 to 999, and the output of 1005 on the digit trunk is shown, with the least significant digit line 
shown on top. 
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5. DISCUSSION AND FUTURE WORK 
 
 Difficulties experienced in the project stemmed from the adherence to the 
original pulse train and resultant timing issues.  Running off the pulse train increased 
program complexity and decreased productivity.  The original ENIAC was more efficient 
and fail proof than this implementation.  The FPGA chip used for implementation was a 
tight fit, and a larger chip would improve system performance. 
  
 Space constraints were a constant limitation.  The FPGA used has 30,000 logic 
gates; devices with up to 500,000 gates are commonly available.  The code was 
optimized several times to fit onto the chip.  The optimization included converting 
behavioral statements (if…else statements) into combinational logic statements and 
reducing the number of registers used in the code.  The carry operation was originally 
implemented in a separate entity than the receiver, but the two entities were combined to 
reduce size.  The optimization significantly reduced program size, but the chip still did 
not contain sufficient space.  After changing compiler preferences to emphasize 
optimization during the translation and mapping processes, the entire implementation fit 
onto the desired FPGA.   
 

The problems experienced during the counting trial suggest timing will be an 
issue.  The reason for the seven minute delay after 110 addition cycles is unclear.  The 
sign and program pulse output LEDs show that the cycling unit, sign component, and 
even some of the receiver continue functioning.  When the significant digit setting is set 
so that the second least significant bit is five upon start up, the seven minute delay occurs 
after 110 cycles, not at the value 993.  The delay appears unrelated to the cycling unit or 
carry operation.  The delay will cause major synchronization problems with the other 
units as the program pulse output continues during the delay. 
 
 Implementation with the full input and output capabilities will require several 
changes to the program.  The start-up unit, in which the switches are read, needs several 
changes for the full implementation.  It will need to be redesigned for the encoders, 
decoders, and I/O structure of the full panels.  The words stored to RAM are designed for 
the full implementation, so RAM and the word convention associated with it will not 
need to be modified.  The receiver decodes information from RAM, and assumes the full 
data format that will be needed for the full unit.  Addresses will change with the full 
implementation, but the current format should be sufficient for the required increased 
input and output. 
 
 The final product will include a system of three accumulators and a constant 
transmitter.  The constant transmitter was not designed for this report.  The cycling unit 
designed for the accumulators does not contain the 4P, 2P, 2'P, and 1P pulses that are 
unique to the constant transmitter.  However, the first cycling unit was designed to work 
for any unit and thus includes these pulses.  The constant transmitter should be a 
relatively simple piece to design and implement.  The interaction between three 
accumulators will need to be thoroughly tested and debugged, as it has been performed 
only in simulation for this report. 
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6. CONCLUSIONS 
 
 The work described in this paper achieved the original goals for the summer 
project.  Two accumulators were not hooked together, preventing full testing, and 
debugging may still be necessary for the completed units.  The project proved more 
difficult than expected due to timing issues and unfamiliarity with the Xilinx platform.  
Learning the architecture of the original ENIAC took a significant amount of time, but 
the architecture is relatively straightforward.  The architecture was designed for the 
hardware available at the time.  Implementing it on modern hardware was difficult, as the 
concept of a system running off a set of 10 clocks is unusual and the FPGA is not 
designed to run on more than one clock.  Significant progress toward the final product 
was made on this project.  The final product will provide an excellent learning 
opportunity for people to experience how the first general purpose computer was 
programmed. 
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9. APPENDICES 
 
APPENDIX 1: OPERATING MODE ENCODING 
 

Switch Value Port Mode Encoded 
0 None Null 0000 
1 Alpha Receive 0001 
2 Beta Receive 0010 
3 Gamma Receive 0011 
4 Delta Receive 0100 
5 Add Transmit 0101 
6 Subtract Transmit 0110 
7 Add and Subtract Transmit 0111 

 
APPENDIX 2: DECODER SWITCH ADDRESSES 
 

Address Function 
0100 Clear Correct Switches 
0101 Significant Digits Switch 
1011 Program 4 Repeat Switch 
1110 Program 4 Operation Mode Switch 

 
 


