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Electrospinning 

 

Image taken from Heo et al., Mauck et al., 2009 
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Synthetic scaffold mechanics 
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Mesenchymal stem cells 

Image taken from http://www.xpand-biotech.com/technology_bioreactor.htm 
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MSC Differentiation 

• Chemical cues 
– TGF-β1/β3 and BMP-2 (Noth et al., 2007; Barry et 

al., 2001; Schmitt et al., 2003) 
 

• Physical cues 
– Dynamic loading (Huang et al., 2004) 

– Substrate stiffness (Engler et al., 2006) 
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MSC Differentiation 

Image taken from Engler et al., 2006 
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Cells as sensors 

• Extracellular strain is transmitted from 
exterior of the cell to the nucleus via 
various cellular structures (FAK, actin 
cytoskeleton, lamin, nesprin) (Nathan et al., 
2011; Rezzonico et al., 2003; Lammerding et al., 2004; Chancellor et al., 
2010) 

• Changes in gene expression accompany 
nuclear deformation (Heo et al., 2011; Hoshiba et al., 
2008) 
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Nuclear mechanics 

• Increasing heterochromatin 
concentration levels accompanies 
nuclear stiffening 

Heo et al., 2011 
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Our starting point… 

• What happens to MSC’s response to 
mechanical stimuli when nuclear 
mechanics are altered? 
 

• Trichostatin A 
– Histone deacetylase inhibitor (Yoshida et al., 

1995) 
– Results in chromatin relaxation and less 

heterochromatin (Toth et al., 2004) 
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Experimental design 

• Mesenchymal stem cells 
– Juvenile bovine MSCs from tibial and femoral bone marrow  

Culture on AL scaffolds 
in CM(-) 

Culture on AL scaffolds 
in CM(+) 

Culture on AL scaffolds 
in CM(+) + TCA 

8d 8d 7d 

1d 
Testing 
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Experimental design 

Fluorescence 

Cells on fiber-
coated glass slides 

1d 

AFM 

Cells on TCP 

1d 

Cultured on AL scaffolds 

Heterochromatin 
concentration 

Nuclear  
stiffness 
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Heterochromatin condensation 

 

* P < 0.01 vs. CM(-). † P < 0.01 vs. CM(+) + TCA.  n = 35  
20 



Nuclear stiffness 

 

* P < 0.01 vs. CM(-).  
† P < 0.01 vs. CM(+) + TCA . 
n = 10 
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Experimental design 

 

Cultured on AL scaffolds 

NAR 

0% and 10% static 
stretch on AL scaffolds 

RT-PCR 

0% and 10% static 
stretch on AL scaffolds 

1h 

Nuclear aspect 
ratio 

Cartilage gene 
expression 
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Nuclear aspect ratio 

* P < 0.01 vs. same culture with 0% strain.   
‡ P < 0.01 vs. CM(+) + TCA with 10% strain.   
† P < 0.01 vs. CM(+).   
n ≥ 200 
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Cartilage gene expression 

 

* P < 0.05 vs. 0% stretch.   
† P < 0.05 vs. CM(-).   
‡ P < 0.05 vs. CM(+) + TCA. 
n = 5 
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Conclusion 

• A decrease in nuclear stiffness can be seen 
to accompany decreasing heterochromatin 
concentrations (consistent with increasing stiffness with 
differentiation Pajerowski et al., 2007) 

• Altered nuclear mechanics due to 
heterochromatin condensation affects MSCs 
response to mechanical stimuli 

• This can be seen in the increased NAR 
during static stretch conditions 

• AGG and COL II are no longer up-regulated 
with stretch (consistent with TCA inhibits differentiation 
Lee et al., 2004)  
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Nuclear aspect ratio 
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Cartilage gene expression 
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