Altered Mechanosensitivity with Modulation of Nuclear Mechanics in Fibrochondrogenic Mesenchymal Stem Cells

Ziwei Zhong, Su-Jin Heo, and Robert Mauck

McKay Orthopaedic Research Laboratory, Depts. of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA

McKay Orthopaedic Research Laboratory

 Musculoskeletal soft tissue repair

- Musculoskeletal soft tissue repair
- Tendons/ligaments

 Aligned

Unidirectional Alignment (tendon, ligament)

- Musculoskeletal soft tissue repair
- Tendons/ligaments

 Aligned
- Annulus fibrosus
 Opposing layers

Intra-Lamellar Alignment (annulus fibrosus)

- Musculoskeletal soft tissue repair
- Tendons/ligaments

 Aligned
- Annulus fibrosus
 Opposing layers
- Knee meniscus
 - Circumferential with perpendicular fibers

Electrospinning

Image taken from Heo et al., Mauck et al., 2009

6

Electrospinning

Image taken from Heo et al., Mauck et al., 2009

Synthetic scaffold mechanics

Synthetic scaffold mechanics

Mesenchymal stem cells

Mesenchymal stem cells

Image taken from http://www.xpand-biotech.com/technology_bioreactor.htm

MSC Differentiation

Chemical cues

TGF-β1/β3 and BMP-2 (Noth et al., 2007; Barry et al., 2001; Schmitt et al., 2003)

- Physical cues
 - Dynamic loading (Huang et al., 2004)
 - Substrate stiffness (Engler et al., 2006)

MSC Differentiation

Image taken from Engler et al., 2006

Cells as sensors

- Extracellular strain is transmitted from exterior of the cell to the nucleus via various cellular structures (FAK, actin cytoskeleton, lamin, nesprin) (Nathan et al., 2011; Rezzonico et al., 2003; Lammerding et al., 2004; Chancellor et al., 2010)
- Changes in gene expression accompany nuclear deformation (Heo et al., 2011; Hoshiba et al., 2008)

Nuclear mechanics

 Increasing heterochromatin concentration levels accompanies nuclear stiffening

Heo et al., 2011

Our starting point...

- What happens to MSC's response to mechanical stimuli when nuclear mechanics are altered?
- Trichostatin A
 - Histone deacetylase inhibitor (Yoshida *et al.*, 1995)
 - Results in chromatin relaxation and less heterochromatin (Toth *et al.*, 2004)

Experimental design

Mesenchymal stem cells

- Juvenile bovine MSCs from tibial and femoral bone marrow

Experimental design

Heterochromatin condensation

20

Nuclear stiffness

* P < 0.01 vs. CM(-). † P < 0.01 vs. CM(+) + TCA . n = 10

Experimental design

Nuclear aspect ratio

* P < 0.01 vs. same culture with 0% strain.
‡ P < 0.01 vs. CM(+) + TCA with 10% strain.
† P < 0.01 vs. CM(+).

Cartilage gene expression

* P < 0.05 vs. 0% stretch. † P < 0.05 vs. CM(-). ‡ P < 0.05 vs. CM(+) + TCA. n = 5 Penn

Conclusion

- A decrease in nuclear stiffness can be seen to accompany decreasing heterochromatin concentrations (consistent with increasing stiffness with differentiation Pajerowski *et al.*, 2007)
- Altered nuclear mechanics due to heterochromatin condensation affects MSCs response to mechanical stimuli
- This can be seen in the increased NAR during static stretch conditions
- AGG and COL II are no longer up-regulated with stretch (consistent with TCA inhibits differentiation Lee *et al.*, 2004)

Acknowledgements

- Mauck Lab
 - Dr. Rob Mauck
 - Su-Jin Heo
 - Tristan Driscoll
 - Everyone
- Dr. Jan Van der Spiegel

Funding Sources

National Science Foundation

Heterochromatin concentration

Nuclear stiffness

Nuclear aspect ratio

Nuclear aspect ratio

Penn

Heo et al., 2011

Cartilage gene expression

