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ABSTRACT 
 
In recent years, energy harvesting using piezoelectric materials has become a very popular 
research topic. Various device sizes and structures have been tested, but it is difficult to compare 
power measurements as device fabrication and experimental methods vary from paper to paper. 
In an effort to standardize comparisons in spite of these changing parameters, the dependence of 
generator power output on device dimensions has been investigated.  
 
Though MEMS scale devices have been produced, comparatively little work has been done using 
aluminum nitride (AlN). This project utilizes AlN due to its ease in processing and potential for 
on-chip integration. By operating at a MEMS scale, the benefit is that arrays of piezo generators 
can be placed on the same die. With the process advantages of AlN, a long term goal of an 
integrated power-harvesting chip becomes feasible. 
 
However, theoretical results of scaling predict that raw power output and even power per unit 
volume will decrease with scaling. This indicates that a single large generator, taking up the 
same area as several small generators, would produce a noticeably larger power output.  
 
Due to time constraints, no new generators could be fabricated within the time span of the 
project. An existing piezoelectric cantilever was used to verify the theoretical predictions of 
resonant frequency and static deflections under applied voltage. These predictions agreed quite 
closely with the observed results. However, no measurable electrical response could be found 
while exciting the beam with an electromagnetic shaker device. A similar experiment was 
performed using an AFM to directly excite the beam, but again the electrical response was 
difficult to characterize. 
 
While the results of the experiments were not optimal, the difficulty in measuring the electrical 
response of the beam demonstrates the design challenges involved with energy harvesting on a 
small scale. Piezoelectric generators rely on resonance to generate useful quantities of power, 
and power output is highly sensitive to the frequency of the physical vibrations applied. While 
generators of this type could be useful if targeted to a specific application if the frequency of 
environmental vibrations is known, a more versatile approach would use a different design to 
reduce the frequency sensitivity. Broad-band designs, using either non-resonant or self-tuning 
structures, would be able to harvest energy much more efficiently in changing environments. 
 
 
 
 
 
 



1. INTRODUCTION 
 
Low-power wireless distributed sensor networks are becoming attractive for monitoring different 
variables – such as temperature, strain in a material, or air pressure – over a wide area. However, 
one drawback of these networks is the power each node draws, though recent work has shown 
this can be lowered considerably [1]. Batteries can be used to power nodes for extended periods 
of time, but they have a limited life cycle and eventually need to be replaced. As this can be a 
costly and time consuming procedure for networks with many nodes, a means of powering the 
devices indefinitely would be a more practical solution.  
 
Solar power provides a considerable amount of energy per area and volume, but unfortunately is 
limited to applications that are reliably sunlit [2]. A promising alternative takes advantage of the 
energy in ambient vibrations and converts it to electrical power. This approach compares very 
favorably with batteries, providing equal or greater power per unit volume. 
 
There are multiple techniques for converting vibrational energy to electrical energy. The most 
prevalent three are electrostatic, electromagnetic, and piezoelectric conversion [3]. A majority of 
current research has been done on piezoelectric conversion due to the low complexity of its 
analysis and fabrication. Most research, however, has targeted a specific device scale [4-7]. Little 
research comparing power output across different scales has been done for piezo harvesters, 
though scaling effects have been discussed briefly in some works [4,8].  
 
This paper aims to develop a theoretical understanding behind the scaling of piezoelectric 
cantilever generators, and to recommend a direction for future research in this area based on the 
conclusions.  

 
2. BACKGROUND 
 
2.1 The Piezoelectric Effect 
 
The piezoelectric effect, in essence, is the separation of charge within a material as a result of an 
applied strain. This charge separation effectively creates an electric field within the material and 
is known as the direct piezoelectric effect. The converse piezoelectric effect is the same process 
in reverse: the formation of stresses and strains in a material as a result of an applied electric 
field.  
 
The IEEE standard on piezoelectricity lists several different forms for the piezoelectric 
constitutive equations [9]. The form used here is known as the d-form, and the equations are as 
follows: 

S = sET + dE

D = dT + εT E
 

 
These equations, known as the “coupled” equations, reduce to the well-known stress-strain 
relationship at zero electric field, and the electric field and charge displacement relationship at 
zero stress. 
 



2.1.1 Piezoelectric Materials 
 
A majority of piezoelectric generators that have been fabricated and tested use some variation of 
lead zirconate titanate (PZT). Typically, PZT is used for piezoelectric energy harvesters because 
of its large piezoelectric coefficient and dielectric constant, allowing it to produce more power 
for a given input acceleration [10]. Another less common material is aluminum nitride (AlN). 
Though it has a smaller piezoelectric coefficient and dielectric constant, aluminum nitride has 
advantages in material deposition and in compatibility with the standard CMOS processes used 
for fabrication of integrated circuits [6]. This makes the possibility of an integrated “power chip” 
realizable. Because of these advantages, the project will focus on the use of AlN as the 
piezoelectric material of choice. However, for future optimizations, the change in output power 
from switching to a different material should be investigated. 
 
2.1.2 Anisotropic Effects and Coupling Modes 
 
Piezoelectric materials have a built-in polarization, and therefore respond differently to stresses 
depending on the direction. There are two primary modes of electromechanical coupling for 
piezoelectric materials: the 3-1 mode and the 3-3 mode. In the 3-1 mode (Figure 2.1a), the 
electric field is produced on an axis orthogonal to the axis of applied strain, but in the 3-3 mode 
(Figure 2.1b), the electric field produced is on the same axis as the applied strain. 
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While the piezoelectric coefficient is higher in the 3-3 mode 
for most materials, taking advantage of the larger coefficient 
requires a much more complex design. Instead of simple 
planar electrodes, a series of interdigitated electrodes (IDE) 
can be used to take advantage of the 3-3 coupling mode [7]. 
However, this approach leads to a very small device 
capacitance and therefore a high output impedance, making load matching difficult [11]. Another 
disadvantage is that the IDE approach only works for electrically-poled piezoelectrics such as 
PZT. In AlN, the direction of polarization of the material is set during deposition, so fabrication 
of a 3-3 mode device would be prohibitively complex. For this reason, the devices analyzed in 
this report will only utilize the 3-1 coupling mode. 
 
 
2.2 Device Configuration 
 
The vast majority of piezoelectric energy harvesting devices use a cantilever beam structure. A 
cantilever beam, by definition, is a beam with a support only one end, and is often referred to as 
a “fixed-free” beam. When the generator is subjected to vibrations in the vertical direction, the 
support structure will move up and down in sync with the external acceleration. The vibration of 

the beam is induced by its own inertia; since 
the beam is not perfectly rigid, it tends to 
deflect when the base support is moving up 
and down (see Figure 2.3). Typically, a proof 
mass is added to the free end of the beam to 
increase that deflection amount. This lowers 
the resonant frequency of the beam and 
increases the deflection of the beam as it 
vibrates. The larger deflection leads to more 
stress, strain, and consequently a higher 
output voltage and power [5].  

 
Electrodes covering a portion of the cantilever beam are used to conduct the electric charges 
produced to an electrical circuit, where they can be utilized to charge a capacitor or drive a load. 
Different electrode lengths or shapes have been shown to affect the output voltage, since strain is 
not uniform across the beam [12]. 
 
 
2.3 Modes of Vibration and Resonance 
 
A cantilever beam can have many different modes of vibration, 
each with a different resonant frequency. The first mode of 
vibration has the lowest resonant frequency, and typically 
provides the most deflection and therefore electrical energy. A 
lower resonant frequency is desirable, since it is closer in 

Figure 2.3: note that strain is generated along the 
length of the beam, hence the use of the 3-1 mode  
(Figure taken from [13]) 

Figure 2.2: an 
example of an IDE  
pattern [7] 

Figure 2.4: Different mode 
shapes of a vibrating beam. 
(Figure from [14])



frequency to physical vibration sources and generally more power is produced at lower 
frequencies [5]. Therefore, energy harvesters are generally designed to operate in the first 
resonant mode.  
 
Each mode of vibration has a characteristic mode shape. This describes the deflection of the 
beam along its length. Figure 2.4 shows some examples of mode shapes for the first three 
vibrational modes of a beam. When a beam is vibrating in a particular mode, the deflection will 
vary sinusoidally with time, with the amplitude of the sine wave along the length of the beam 
given by the mode shape. The points where the mode shape is zero are stationary and are referred 
to as nodes. In general, the nth vibrational mode will have n nodes. 
 
2.4 Physical Vibration Sources 
 
The frequency and amplitude characteristics of ambient vibration sources have been analyzed in 
Roundy et al [2]. They concluded that most ambient vibration sources have relatively low 
frequencies (under 200 Hz) and widely varying acceleration levels. As a representative source, 
they chose the 120 Hz, 2.5 m/s2 acceleration measured from a microwave oven.  
 
2.5 Rectification and Storage 
 
To convert the AC output voltage to a more useful DC voltage, some form of rectification must 
be used. One group has come up with a generator that produces DC voltage directly, without the 
need for rectification, but it is still in the development phase [15]. Typically, low-power or small 
signal diodes are used to form a bridge rectifier [4-7]. Novel approaches have included the use of 
custom low-power diodes and voltage multipliers [6].  
 
After rectification, the DC voltage is used to charge a capacitor or battery. This allows the device 
to draw more power over a short period than the harvester is able to provide. DC-DC conversion 
schemes have also been explored and have been shown to charge batteries far more efficiently 
[16].  
 
 
3. THEORETICAL PREDICTIONS 
 
3.1 Estimation of Resonant Frequency 
 
The following estimates assume that beams are homogenous, composed of a single uniform 
material, and of constant cross section. However, equivalent values for Young’s modulus and 
density can be calculated for composite beams by using a weighted average method [17]. The 
resulting equations describing the resonant frequencies are much more compact, making the 
scaling analysis far more straightforward. 
 
3.1.1 Using the Beam Equation1 
 

                                                 
1 This information is paraphrased from “The Encyclopedia of Vibration”, pages 137-143. 



The resonant frequencies of a beam can be estimated using Euler-Bernoulli beam theory [14]. By 
solving the Euler-Bernoulli beam equation with the appropriate boundary conditions, the 
eigenvalues of the system can be determined, which then allow for the calculation of the resonant 
frequencies. The differential equation describing the motion of an Euler-Bernoulli beam is: 
 

∂ 4δ
∂x 4 +

ρA

EI

∂2δ
∂t 2 = 0, 

 
where δ is the beam deflection as a function of position along the beam and time, ρ is the 
density, A is the area of the cross section of the beam, E is the Young’s modulus, and I is the 
area moment of inertia. For a beam of rectangular cross section, the relevant moment is 
I = 1

12 wt 3 . 
 
The general solution for sinusoidal vibration is as follows, with the constants and eigenvalues 
determined by the boundary conditions. 
 

δ(x,t) = c1 sinβx + c2 cosβx + c3 sinhβx + c4 coshβx( )⋅ sinωt  
 

where 
 

β 4 =
ρAω 2

EI
 

 
For a fixed-free beam with no proof mass, the relevant boundary conditions for a beam of length 
L are: δ(0, t) = δx (0, t) = 0  and δxx (L, t) = δxxx (L,t) = 0 . These first two boundary conditions 
indicate that the fixed end of the beam is stationary, and that the beam is flat at the point of 
attachment. The free end conditions mean that there are no forces applied at that point and no 
bending moment. The first nontrivial eigenvalue of this system is βL ≈ 1.875, so the equation for 
the resonant frequency of the first mode is: 
 

f =
ω
2π

=
1.8752

2πL2

EI

ρA
 

 
By rewriting I and A in terms of the beam dimensions, the widths cancel and the expression 
reduces to: 

f =
1.8752

2π
E

12ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

t

L2  

 
For a beam with a proof mass added on the tip, the mass can be modeled as a point load on the 
tip. The fourth boundary condition then becomes  

δxxx (L,t) = −
mω 2

EI
δ(L, t) , 

where m is the mass of the beam. The calculation of eigenvalues in this case depends on the ratio 
of the added mass to the mass of the beam.  



 
3.1.2 Using Stiffness and Effective Mass 
 
If we model the beam deflection as a 1st order spring-mass system, then the resonant frequency 
can be estimated as 

fo =
1

2π
keff

meff

 

 
The effective mass of the beam itself is approximately 0.236 times the beam’s actual mass [18], 
and if the proof mass is modeled a point load at the tip, the total effective mass is approximately: 
 

meff = 0.236ρAL + mproof  
 

The stiffness of a rectangular beam is keff =
3EI

L3 , so for a beam with no proof mass: 

 

f =
1

2π
E

0.236 ⋅ 4ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

t

L2  

 
Assuming the added mass on the tip is much larger than the mass of the beam itself leads to this 
expression for the resonant frequency (assuming the stiffness is unaffected): 
 

f =
1

2π
3E

mproof

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

wt 3

L3  

 
To model the effects of the distributed mass loading, rather than tip loading, of the proof mass, 
Leff = Lbeam − 0.5Lproof  can be substituted for the length. 

 
Both approaches for calculating the resonant frequency arrive at similar results when the proof 
mass is not taken into consideration, differing by only about 1%. When the proof mass is also 
considered, the stiffness approach is mathematically simpler, and will be used to estimate the 
structure size needed to take advantage of ambient vibration sources.  
 
3.2 Modeling of Piezoelectric Generators 
 
3.2.1 Static Deflections 
 
For the modeling of static deflections of beams, a simple equation was derived from the 
piezoelectric constitutive relationship. DeVoe and Pisano [19] developed a model for multilayer 
actuators by equating strain at the boundaries of each layer. For this specific beam, a simpler 
model can be developed exploiting the symmetry of the fabricated structure. 
 
The beams tested have a “sandwich” structure, consisting of alternating layers of aluminum 
nitride and platinum, as shown in Figure 3.1.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
To derive a relationship between deflection of the beam and applied voltage, we start by 
computing stress based on a known tip deflection. If the tip is deflected downward by some 
amount δt then the deflection along the length of the beam – assuming constant curvature –
becomes 

δ(x) = −
δt

L2 x 2 

where L is the length of the beam, so that the deflection at x=L is δt in the downward direction. 
 
Strain is a linear function of distance from the neutral axis, and is written as 
 

S =
M

EI
y = −

∂2δ
∂x 2 y =

2δt

L2 y  

 
Figure 3.2 shows this strain variation with respect to the distance from the neutral axis. Using the 
piezoelectric equation S = sT + d31E, evaluated at T = 0, gives the following relationship 
between the strain, S, and the applied voltage, V. 
 

S =
2δt

L2 ⋅
1

2
tPt + tAlN( )= d31E = d31

V

2tAlN

 

 
The average distance from the neutral axis is used 
in place of y to arrive at a value for average stress. 
In a bending beam, the neutral axis is the line 
along the beam where no stress is experienced. 
Because of the symmetric nature of the structure, 
the neutral axis will be centered vertically. 
 
Solving for deflection in terms of voltage gives 
 

δt V( )=
d31L

2V

2tAlN tPt + tAlN( )
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So deflection as a function of length is then 
 

δt x,V( )=
d31x

2V

2tAlN tPt + tAlN( )
 

Smits and Dalke [20] develop a similar model using energy density to calculate deflection, which 
reduces to the following for this structure: 

 

δt x,V( )=
3d31x

2V

8tAlN
2  

 
The predictions of the two models and the experimental results are compared in Section 4.2. 
 
 
3.2.2 Dynamic Deflections 
 
Many different approaches have been used to model the mechanical and electrical behavior of 
piezoelectric cantilever beam generators when excited by external vibrations [3,5,21,22]. Basic 
models represent the system as a spring-mass-damper mechanical system, with the electrical 
output coupled to some physical parameter of the system [3]. More sophisticated models take 
into account the additional damping and backward coupling effects of the electrical load on the 
mechanical system [5,21]. Even more accurate models use multiple degrees of freedom to model 
the effect of mutiple modes of resonance of the system [22].  
 
For this report, the model of Roundy & Wright [5] was chosen for its simplicity and 
demonstrated success in modeling. A multiple degree of freedom model would provide more 
accurate results at frequencies far from the first resonant frequency, but near resonance the two 
should have similar results. 
 
Roundy’s model for voltage output across a resistive load, as a function of excitation frequency, 
is listed below. It is assumed that the two piezoelectric layers are wired in series. 
 

V ω( ) = ω 2 2cPd31tcAin

εk2

ωn
2

RCb

−
1

RCb

+ 2ζωn

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ω 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
2

+ ω 2 ωn
2 1+ k31

2( )+
2ζωn

RCb

−ω 2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
2⎧ 

⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

−1
2

 

 
The constants in the equation are described in Table 3.1, at the end of this section. 
 
Assuming operation at resonance, Roundy also derives this relationship: 

V =
2ωcPd31tcAin

εk2

ω 2 ω 2k31
2 +

2ζω
RCb

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ 4ζ 2ω 6
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

−1
2

 

 
Instantaneous power dissipation is then 
 



P =
Vrms

2

R
=

V
2

2R
=

1

2ω 2

RCb
2 2c p d 31tc

k2ε( )2

Ain
2

4ζ 2 + k31
4( ) RCbω( )2 + 4ζk31

2 RCbω( )+ 4ζ 2
 

 
 
With an optimal load resistance (R = 1/ωCb), the power expression becomes 
 

P =
1

2ω 3

Cb

2c p d31tc
k2ε( )2

Ain
2

8ζ 2 + 4ζk31
2 + k31

4( )
 

 
Table 3.1: 

 
ω Driving frequency (in rad/s) 
cP Young’s modulus of piezo layer 
tc Thickness of piezo layer 
Ain Magnitude of input acceleration 
ε Permittivity of piezo layer 
k2 Relates tip deflection to stress:  

k2 =
L2

3
2 tPt + tAlN( )

2L + 3
2 Lmass

2L + Lmass − Lelectrode

 

ωn Resonant frequency of generator 
R Load resistance 
Cb Capacitance of beam 
ζ Damping ratio 
k31 Coupling coefficient: k31

2 =
d31

2 cP

ε
 

 
 
3.3 Effects of Scaling 
 
Roundy & Wright briefly discuss the dependence of power output on device scale, and verify 
that a larger generator will produce a larger power output [5]. However, they do not investigate 
the full dependence of power generation on device scale.  
 
To understand how power and scale are related, a relation between device size and resonant 
frequency must first be derived. From section 3.1.2 we see that for devices with a large tip mass: 
 

ωo ∝
wt 3

mL3  

 
The other parameters in the power equation have the following dependences on scale: 
 



Cb ∝
wL

t
, tc ∝ t  and k2 ∝

L2

t
 

 
So then the final power dependence on scale is 

 

P ∝
wt 3

mL3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−3 / 2
wL

t

t
L2

t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

=
1
w

mL

t

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

3

= w
−1

2L
3
2t

−3
2m

3
2  

 
This brief scaling study shows that a long, thin beam with a large proof mass will yield the most 
power. Another interesting result is to consider a base design, with a standardized length, width, 
thickness, and proof mass size, and investigate what happens when each dimension is scaled 
linearly. Mathematically, this can be emulated by replacing each linear dimension by a factor of 
k, and the mass by k3, since mass is proportional to volume, which is measured in the cube of 
linear dimensions. It is then derived that power is proportional to the fourth power of the linear 
dimension of the device, i.e. that 

P ∝ k 4 . 
This also means that power per unit area and volume will both decrease when devices are scaled 
down, since area and volume are proportional to k2 and k3. Kasyap [8] arrives at a similar 
conclusion and verifies it with finite-element method (FEM) simulations.  
 
4.  EXPERIMENTAL RESULTS 
 
4.1 Experimental Setup 
 
For testing purposes, the die containing the cantilevers to be tested was attached to a PCB 
approximately 4cm by 4cm with carbon tape. Two leads were soldered to the PCB, and the 
contacts connected to the electrodes on the surface of the beam were wire-bonded to the PCB. 
On the device itself, the top and bottom electrodes share a single pad on the die, and the second 
pad is connected to the middle electrode. A hole was drilled in the center of the PCB and 
threaded for attachment to the mount on the vibration shaker. 
 

                          
  
 
 
 

Figure 4.1a: an overhead view of 
one of the 400µm beams

Figure 4.1b: a side view of two 
beams showing the bending caused 
by the mass of the beam 



Due to the time constraints, the design and fabrication of a generator was not feasible. Instead, a 
cantilever on an older wafer was chosen for analysis. The cantilever to be tested is approximately 
400μm long and 100μm wide, with tPt = 0.2μm and tAlN = 1μm (see Figure 3.1). There is actually 
a series of cantilevers, with lengths of 400, 300, 200, and 100 µm. However, the longest 
cantilever would exhibit the greatest response, so the 400µm was chosen for testing. Since the 
cantilevers were not designed with energy harvesting in mind, they lacks proof masses. This 
design is not optimal, but it does serve to illustrate many of the characteristics that would need to 
be taken into account. The relevant material properties used in estimates can be seen in Table 
4.1. 
 

EAlN (in plane) 292 GPa [23] 
ρAlN 3200 kg/m3 [17] 
d31 (AlN) -1.98 pC/N [23] 
EPt 168 GPa [17] 
ρPt 21450 kg/m3 [17] 

 
 
4.2 Resonant frequency verification 
 
To verify the estimates for the resonant frequency, the impedance of the device was measured 
across a range of frequencies using an Agilent impedance analyzer. The impedance 
measurements were done in a vacuum, as damping due to air would severely reduce the beam’s 
movement at atmospheric pressure and make the resonance peak difficult to discern. 
 
The following measurement was made for the beam measuring 400μm long by 100 μm wide: 

 
Figure 4.2 

 
Using the approximate relationships derived in section 3.1, the calculated resonant frequencies 
are 15.6 kHz (beam equation approach) and 15.9 kHz (stiffness approach). This represents errors 

Table 4.1: 



of 13% and 15%, respectively. For comparison purposes, another impedance measurement was 
made of a 300μm by 100μm beam on the same die: 

 
Figure 4.3 

 
In this case, the calculated resonant frequencies are 27.8 kHz (beam equation) and 28.2 kHz 
(stiffness), and the relative errors are 22% and 25%.  
 
Since the relative error increases significantly when a shorter beam is used, this suggests that the 
derived models are not as accurate for shorter beams. In fact, one of the assumptions of the 
Euler-Bernoulli beam equation is that the length is significantly larger than the width and 
thickness. Keeping all other factors constant, better agreement would be expected with longer 
beams. 
 
4.2 Static Deflection 
 
To verify the actuation response of the beam, a voltage was applied across the electrodes of the 
beam and the deflection response measured (see figure 4.4). The measurements were made using 
a Zygo laser interferometer. 
 



 
Figure 4.4 

 
Comparing tip deflection between experimental measurements and theoretical predictions shows 
that the theory overestimates the tip deflection by a small but noticeable amount: 

 
Figure 4.5 



 
The relative error between the developed model and the experimental results is about 10% for 
each applied voltage. The model derived by Smits & Drake [20] is accurate to within 5% for all 
data points, and within 1% for most. 
 
4.3 Excitation using Vibration Shaker 
 
To test the beam’s response to accelerations, the PCB with the wire-bonded die was fastened 
securely to the shaker mount. An Agilent function generator was used to drive the shaker, and 
the output signal from the piezoelectric device was buffered and amplified so it could be 
measured with an oscilloscope. 
 
However, since the output current of the function generator is limited, sufficient acceleration 
levels could not be created. Using a Phidgets accelerometer, the applied acceleration was 
measured and was found to have a magnitude of only about 0.1 g. 
 
In an attempt to resolve this issue, an Apex PA-98 amplifier was also used to drive the shaker. 
This did result in an improved acceleration output, but the shaker output was then limited by the 
low current capability of the amplifier (~40mA). To facilitate future testing, an amplifier 
configuration with a higher output current will be used, as the PA-98 can support up to 200mA 
of output. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6: Diagram of shaker setup 
 
 
5. CONCLUSIONS AND RECOMMENDATIONS 
 
It has been shown that the current device structure does not have scaling advantages in power per 
unit area or volume. It is difficult to produce sufficient displacement at small scales to generate a 
considerable voltage. At the microscale, resonance frequencies are too low to effectively convert 
ambient frequencies as found in nature.  
 
As an illustration of the challenge of reaching lower frequencies with MEMS devices, consider a 
beam of equal width and thickness as the one tested, but a significantly larger length and an 
added proof mass. Using the frequency estimate in section 3.1.2, a 2000μm by 100μm by 2.6μm 

function 
generator 

piezo 
cantilever 

buffer + 
amplifier 



beam would need to have a 0.11mg proof mass to reach even 200 Hz. Using a relatively dense 
metal such as gold would still require a cubic proof mass of approximately 148μm on each side.  
 
Due to the difficulty in reaching low frequencies with MEMS scale devices, these types of 
energy harvesters would be limited to applications with very high frequency vibrations. 
However, for compact systems with very low power requirements, MEMS microgenerators are a 
very attractive means of powering devices indefinitely.  
 
Recommendations are to build devices of this form, with a proof mass added, while targeting 
lower resonant frequencies. Alternate geometries may help in lowering the resonant frequency, 
and gaining more power output. More effective solutions include designing a structure that is 
either not dependent on resonance, or has a means of tuning its resonant frequency. Examples of 
such devices have already been demonstrated by other researchers [24,25]. To take advantage of 
the large deflections and strains that go with a beam oscillating at resonance, the tuning approach 
is recommended as the most useful for power output. The challenge will be in adapting existing 
tuning approaches to the MEMS scale, or in devising a new means to tune the beams’ resonant 
frequency. 
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