Applying Immunohistochemistry & Reverse Transcription PCR to Intervertebral Disc Degeneration in an Animal Model

Olga Paley Working with: Professor Dawn Elliott John Boxberger 07/29/05

Sprague Dawley Rat (Rattus norvegicus)

McKay Orthopaedic Research Laboratory

Motivation

- Back pain: the number-one cause of disability in workers under age 45*
- \$50 billion annually is spent in direct connection to back pain*
- Little is known about the causes
 - Disc degeneration a possible suspect
 - More information = better treatment
- Model degeneration in the rat
- Objective: develop preliminary study by applying IHC and RT-PCR

* American Chiropractic Society

<u>Background</u>

- Intervertebral disc composed of annulus fibrosis and nucleus pulposus
- Extracellular matrix controls disc function: components of interest
 - Nucleus:
 proteoglycan
 - Annulus: collagen
 - Various other proteins, enzymes, inhibitors...

chondroitin sulfate (GAG)

collagen fibers

Normal (left) and Degenerate (right) disc

valuronar

kerata

sulfate

nolecule

(GAG)

Definition

- Complex
- Microscopic localization of specific antigens in tissues by staining with antibodies labeled with visible material
- Current Objective
 - Developing procedures
 - Creating baseline data on healthy discs
- Future Plan
 - Understand changes as disc degenerates in: various types of collagen, proteoglycan, and enzymes and their inhibitors

Basic Histology: Hematoxylin & Eosin

- Sagittal section
- Stains nuclei blue and tissues red
- Structure of disc apparent

enn

 Break-up of nucleus a problem

Higher magnification of nucleus Cells are sparse

Basic Histology: Alcian Blue & Picrosirius Red

- Stains proteoglycan blue and collagen red
- Distribution of the two apparent

- Transition from nucleus to annulus is clear
 - Nucleus: no visible collagen, even stain
 - Inner Annulus: some collagen, disorganized fibers
 - Outer Annulus: more collagen, organized fibers

IHC Results: Collagen I

- Most problematic stain
- Literature suggests light staining in outer annulus, none in inner annulus, nucleus
- Background effects significant
 - Reagents becoming trapped in tissue- thickness?
 - Possible cross-reactivity

IHC Results: Collagen II

- Significantly more successful stain
- Literature suggests Collagen II concentrated in inner annulus, some in nucleus
- No staining in nucleus, likely due to low overall concentration

IHC Results: Aggrecan

- Corresponds to Alcian Blue stain
- Literature also suggests aggrecan concentrated in nucleus, inner annulus, endplates
- Staining highly vivid, again, likely background effects
 - More color = less detail
 - Thick tissue sample traps reagents

IHC: Recommendations

- Goal to localize at cellular level, background must be minimized
- Possible changes:
 - Concentration
 - Time of exposure/wash
 - Thickness of section
 - Currently: 7 µm
 - Want: 5 µm
- Next step: back to histology

Gene Expression by RT-PCR

Definition

 the process by which a gene's coded information is translated into the structures present and operating in the cell (either proteins or RNAs)

Current Objective

- Develop a set of protocols to extract information from a sample
- Apply to baseline discs
- Future Plan
 - Apply to both further baseline and degenerate disc material

PCR: Interpreting Results

- Gel electrophoresis separates DNA fragments by size (number of base pairs in gene)
 - Potential is induced over the length of the gel, DNA is charged
 - Larger segments (higher molecular weight) do not travel as far as smaller fragments
 - Allows identification of DNA present
- Leftmost column is ladder
 - specifies size of product

http://www.cgeservice.com

RT-PCR Results

• The two columns to the right are products from L2 and L3 levels of spine, respectively:

- Collagen I: several bands- different primer needed, overamplified
- Aggrecan: overamplified
- Fibronectin (adhesion protein increases with degeneration): expression in healthy disc significant

RT-PCR: Recommendations

- Split the nucleus from the annulus
- Apply this protocol to more proteins and enzymes
- PCR should be quantified
 - Include a control sample for each sample of interest when doing PCR
 - Control will amplify a gene always present in the disc + not affected by degeneration
 - Measure the intensity of the band for the desired gene, normalize it by control

Conclusions

Work conducted this summer has shown that immunohistochemistry and **RT-PCR** are powerful tools which can be applied to understanding the intervertebral disc. There is, however, still a significant amount of background work which must be done before an actual study can be devised.

A deeper understanding of the intervertebral disc gained through such a study will hopefully lead to better back pain treatments and relief.

Thank You

UNIVERSITY OF PENNSYLVANIA

National Science Foundation

McKay Orthopaedic Research Laboratory