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ABSTRACT 
 
Weight-bearing activity has been demonstrated to benefit childhood bone development [1]. 
To further investigate this connection, the Growth and Development Laboratory at the 
Children’s Hospital of Philadelphia wishes to study the effects of strenuous activity 
among school-age children. Acquiring quantitative information about the magnitude and 
duration of force on children’s feet has posed a challenge, as surveys serve only to collect 
qualitative information about exercise. While the equipment necessary to perform human 
kinetic analyses exists, devices used for directly monitoring the activities of a child can 
be large, awkward, and obtrusive. A small, inconspicuous, self-contained mobile device 
to collect and store data about the physical activity of the individual wearing it would 
facilitate medical research in pediatric bone health studies. 
 The data acquisition device proposed by Dr. Jay Zemel of the Moore School of 
Electrical engineering is a small, battery-powered, in-shoe physical activity dynamometer 
(Foot-PAD). It uses a strip of piezoelectric plastic as a force sensor along with circuitry 
capable of taking measurements and storing data over a period of three to fourteen days. 
After this period, information can be uploaded from the dynamometer to a computer, at 
which point the data can be analyzed or stored in an archive for later analysis. 
 Earlier projects established the feasibility of using a piezoelectric polyvinylidene 
fluoride (PVDF) sensor for the dynamometer and presented a small but non-operational 
design. As a result of this summer’s work, the pediatric dynamometer has been 
programmed to sample the piezoelectric sensor, make simple calculations based on these 
readings, store relevant data on a small flash memory chip, and extract this information, 
uploading it to a personal computer after the acquisition has finished. The hardware 
design has also been optimized to take up as little space as possible and consume minimal 
power. 
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1. INTRODUCTION 
1.1. Background 
 
The correlation of a child’s exercise habits to bone density[1] has been a topic of recent 
interest. The Children’s Hospital of Philadelphia (CHOP) is attempting to quantitatively 
document the kinetic activities of a child over the course of days or weeks, specifically 
the average and peak force on a child’s foot. Measurements of force shall be taken 
continuously over a period of time. Surveys and questionnaires are common sources of 
data used medical research, but they are susceptible to sampling and reporting biases and 
are inherently inaccurate, particularly if data is collected from children or adolescents[2]. 
Due to these issues, CHOP cannot use surveys for this childhood bone health study; more 
reliable means are necessary. 

If instrumentation is used to record childhood activities, it must be sensitive and 
designed for the specific application. According to an Iowa State University study[3]: 
 

To accurately assess children's activity patterns, an instrument must be sensitive enough 
to detect, code, or record sporadic and intermittent activity. Care also must be used to 
select criterion measures that reflect appropriate physical activity guidelines for children. 

 
The study also concluded that in studies involving children, there is an “accuracy/ 

practicality” tradeoff such that more accurate devices are accordingly expensive and 
obtrusive. A device is needed that can accurately measure the force on a child’s feet over 
the course of a day or longer without affecting the child’s daily routine. 
 Portable devices have been patented for use in more general kinetic studies, 
mainly for calculating energy expenditure over the course of a day. These patens describe 
detailed methods for sensing force on the feet of an injured patient[4], the use of a 
piezoelectric sensor to analyze human locomotion[5] and calculation of the metabolic 
expenditure of energy by placing a force-sensitive resistor, or strain gage, inside of a 
shoe[6]. 

The Electrical Engineering department of the University of Pennsylvania is 
collaborating with CHOP to find a solution. Embedding a portable dynamometer inside 
the shoe has been proposed and is under development (see Preceding Work). Dr. B Zemel 
of CHOP suggests that it should not be noticeable or else attention will be drawn to the 
device, and the participant, a child, may not want to wear it. It is also necessary to store 
the data in a central location, preferably a personal computer, after the sampling has taken 
place. The device should be relatively inexpensive to fabricate so that multiple instances 
of the device can be used by different participants simultaneously. Once adequate data 
has been received by the hospital, it can be interpreted by specialists in the field of 
childhood bone development. 
 
1.2 Preceding Work 
 
The pediatric dynamometer under development at Penn is fundamentally different from 
what has been done in that it is a completely self-contained unit. The embedded 
microprocessor combined with the sensor and memory allows data to be processed and 
recorded autonomously and locally, not relying on an external communications link to a 
storage device. The nature and sheer quantity of information this device is capable of 
recording may enable medical researchers to address other research issues beyond 
monitoring children’s activity and calculating their energy expenditure. 
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Work on this project was started in the summer of 2004 by Sunfest fellow Olivia 
Tsai[7]. Since then, it has progressed as a senior-year design project during the 2004-05[8] 
and 2005-06[9] academic years. The dynamometer has evolved from a conceptual plan to 
a functioning wireless data acquisition device worn attached to the leg to a two-square-
inch small circuit that fits inside the heel of a young child’s shoe with room to spare. 
 
1.3 Goals of This Project 
 
As of the start of the Sunfest project in May 2006, a hardware design for the pediatric 
dynamometer had been established and most of the details for its design and operation 
were close to implementation. The following conditions needed to be met before this 
device could be utilized by volunteer children: 
 
1. The microcontroller used by this device requires a program that will oversee sensor 
sampling, signal processing (if necessary), documentation of results to an onboard 
memory chip, and serial communications with a personal computer for data retrieval and 
archival. 
2. The existing hardware layout of the pediatric dynamometer was a generic design that 
would have worked, but could be streamlined to include fewer components. Furthermore, 
the hardware layout must be consistent with the software algorithms used in (1). 
3. The pediatric dynamometer must be tested under real-world conditions inside a shoe, 
which should include exposing the sensor and circuits to moisture, mechanical stress, and 
a range of temperatures. 
4. A simple software front-end was needed to easily interface the device to the 
communications port of a PC in a format readily accessible to the researchers’ existing 
software. 
 
 Programming the device and finalizing its layout were the highest priorities for 
the 2006 Sunfest project. With a solid software foundation and a reliable hardware 
backbone, the pediatric dynamometer could be reconfigured and reprogrammed to record 
the desired data in flash memory. The optimal sampling rate could then be decided upon. 
An important goal was that the microcontroller's software could accommodate modified 
algorithms for extracting useful information from the sensor’s output. 
 
2. Building the Pediatric Dynamometer 
2.1 Device Overview 
 
In order to meet the pediatric dynamometer’s size, storage capacity, and power 
consumption constraints, a number of design decisions have been made over the course 
of this project’s development. The heart of the pediatric dynamometer is the PIC16F88 
flash microcontroller. This device oversees the interaction of the other components, 
makes calculations, and performs some simple data interpretation. The polyvinylidene 
diflouride (PVDF) thin film sensor’s output is proportional to the force on the sole of a 
shoe. The sensor’s output is conditioned by a charge amplifier circuit connected to the 
analog-to-digital converter inside of the PIC. After processing, the resulting information 
is recorded on a 16 megabit serial EEPROM that was chosen for its extremely small size 
and relatively high storage capacity. 
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 Each of the device modules and associated software are described in detail with 
explanations as to how each stage interacts with the others. An overview of the operation 
of the completed device is then presented. A number of issues arose during the project 
that may require alternative solutions as discussed in section 5, Recommendations for 
Future Work. 
 
2.2 PIC16F88 Flash Microcontroller 
 
Microcontrollers, the backbones of “embedded systems,” have become ubiquitous over 
the past few decades. As processors they provide appreciable computing power and can 
execute millions of instructions per second. As fabrication technology has improved, the 
microcontroller’s voltage and power requirements have decreased so that they can run for 
extended periods of time off of 3.3V button-cell battery power. The PIC and all of the 
other devices in the pediatric dynamometer are powered by a 3.3V button cell battery. 
Most importantly, microcontrollers offer a wealth of features, including general digital 
inputs and outputs, analog-to-digital converters, serial interfaces, and timers. 
 The PIC series of microcontrollers offers a line of units which best meet the needs 
of the pediatric dynamometer. The PIC16F88 was chosen because of its low power 
consumption, small size, and availability of features: it provides an asynchronous serial 
port for interfacing with a PC, and a synchronous serial port used to read from and write 
to a small serial EEPROM (electrically-erasable read-only memory) chip. There is a 
multiplexed analog-to-digital converter on this PIC, essential for sampling information 
from the sensor. In addition, the PIC16F88 has an internal clock that removes the need 
for a timing crystal, saving space on our circuit board. 
 PIC microcontrollers typically contain EEPROM (electrically erasable 
programmable read-only memory) or flash memory in which the program instructions are 
stored. The PIC is compatible with in-circuit serial programming, which allows users to 
program and debug the PIC in a prototype dynamometer. In-circuit programming 
simplifies the prototyping phase by eliminating the external programming of the PIC, 
which requires removing the PIC from the circuit. 
 Finally, and of significant importance, is the PIC’s low cost. Since the childhood 
activity study would involve dozens or even hundreds of volunteers, it is desirable to 
create the device from inexpensive parts. If purchased directly from Microchip™, one 
PIC16F88 costs between two and three dollars, depending on the quantity ordered. 
 One of the surprises encountered when working with the PIC over the course of 
the design process was the fact that some of the microcontroller’s features frequently 
caused unexpected results. The watchdog timer, which automatically resets the 
microcontroller after a specified number of instruction cycles, is enabled by default and 
must be explicitly disabled if its operation is not desired. The 16F88 employs a low-
voltage brown-out detect that automatically switches the device off when the supply 
voltage drops below 4V, which naturally presented a problem when working with the 
3.3V lithium battery voltage.  
 
2.3 PVDF Sensor 
 
Measuring the vertical force of a foot inside a shoe with a PVDF sensor had been 
established by previous groups[8, 9]. Numerous specific experiments were carried out on 
these sensors under a variety of circumstances. 
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 The principle behind these sensors is piezoelectricity. PVDF is a piezoelectric 
thin-film polymer. When the sensor is bent, charges accumulate on the surfaces, inducing 
current in the external circuit. Figure 1 shows the basic operation of the PVDF sensor in 
response to a force in the horizontal direction. 
 

      
Figure 1a (left): PVDF Sensor Force-Charge Relation 

1b (right) PVDF Equivalent Circuit [11] 

 
 The linear relationship governing this charge displacement is: Qz = dzyFy where Qz 
is the charge displaced across the planar surface, dzy is the longitudinal piezo strain 
coefficient, and Fy is the force along the y-axis. The equivalent circuit[11] shows a voltage 
source VS in series with the sensor’s capacitance C0. The external circuit is the load, ZL. 
For further reference, see [10]. 
 In order to be used with other circuitry, the PVDF is coated with a thin layer of 
conducting material, typically silver, and is then laminated with a protective plastic 
coating. A pair of terminals is attached for connection to the external circuit. Charge 
induced in the external circuit during an instant of time is fundamentally expressed as the 
definition of current: dQ/dt = I. The behavior of the PVDF sensor in a circuit analysis 
context is as follows: any change in the deflection of the device results in an immediate 
current flow through the load ZL. At any period of time when the sensor is stationary the 
net current through ZL is zero. 
 Earlier projects done on the pediatric dynamometer investigated the PVDF 
sensor’s response to mechanical stress. It was shown that the most satisfactory 
mechanical arrangement for the PVDF sensor inside a shoe was to mount it on a 
cantilever of spring steel[8a]. A series of calibration experiments were made by placing 
standard weights on top of the sensor one after the other in set increments and viewing 
the output of the PVDF sensor in each case. For deflection within the bounds of normal 
human locomotion, it was found that the amount of charge displaced was proportional to 
the vertical force on the sensor[8b]. 
 The pediatric dynamometer’s primary goal is to record force. The piezoelectric 
sensors' response to a change in applied force produces a temporary current so long as the 
force is changing, and not over the entire duration of the force. The force is obtained from 
the charge displaced as a function of time, not just at a single instant. Mathematically, the 
force is proportional to the time integration of the signal. 
 Integration can be done in two ways: using the microcontroller's ADC to sample 
the current and store digital signals in an accumulator, and analog integration with a 
charge amplifier. Software in the PIC provides successive sampling of the current flow in 
and out of the sensor. The accumulator value is then a digital representation of the total 
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charge displaced by the sensor. This method produced promising results, as the sample 
data presented both the original PVDF output alongside the integration of the data. 
Software integration has two drawbacks: analog device offset and sampling rate. Signal 
offset is added to the sensor output causing the accumulator to introduce an error each 
sampling cycle. Over time, the offset accumulation introduces a drift, potentially 
rendering the data useless. The sampling rate must also be sufficiently high or else data 
may be lost if the force changes suddenly. 
 Analog integration of the PVDF sensor signal is an alternate and widely used 
approach. One form of analog integrator, called a charge amplifier, was investigated this 
summer and was chosen for use in the pediatric dynamometer. The next section provides 
an in-depth explanation of the charge amplifier. 
 The PVDF sensor also responds to a change in temperature, the pyroelectric 
effect. In the dynamometer application, the low-frequency signal introduced by the 
pyroelectric effect is unwanted. When a test subject first puts on a shoe, the inside of the 
shoe (particularly the sensor inside it) will warm up from room temperature to near body 
temperature. This introduces a slow drift in the input signal that can be reduced by adding 
a charge-leakage resistor to the charge amplifier as discussed in the next section. 
 
2.4 Charge Amplifier 
 
The signal current from the PVDF sensor can be integrated continuously with a charge 
amplifier (CA) to provide a voltage proportional to the charge displaced in the PVDF 
sensor. The CA initially examined is composed of three stages, each controlled by an 
operational amplifier. The Electronics Workbench schematic for the CA is shown in 
Figure 2.  
 

 
Figure 2: Charge Amplifier Prototype—Electronics Workbench™ 

 
 The first stage provides a voltage reference of half the source voltage for the rest 
of the circuit. The PVDF sensor moves current in both directions, resulting in positive 
and negative voltages across its terminals. Since the entire system is powered from a 
single source, a button-cell battery, the op-amp’s input and output range is from 0V to the 
source voltage. An offset is needed for negative voltages to be represented. A logical 
choice is the half-source reference so that an equal amplitude signal can be represented 
above and below the reference without saturating the amplifier (reaching the max or min 
voltage of the amplifier). 

The second stage is the charge amplifier, which integrates the PVDF output signal 
connected between IO4 and IO5. Referring to the voltage at IO5 as Vref, the voltage 
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across C1 as VC, and the output voltage of the amplifier U2 as VCA, and applying the 
negative feedback condition of the op-amp (VIO4 = VIO5) results in the following 
relationship: VCA = Vref + VC. The capacitor voltage VC depends on the charge on it: VC = 
QC/C. Differentiating with respect to time yields: 

)(11 ti
Cdt

dQ
Cdt

dV
C

CC ==  

Integrating with respect to time yields: 

∫∫∫ =⇒= 0

0
)(1)(1 t

CCC
C dtti

C
Vdtti

C
dt

dt
dV  

where the CA is powered at time 0 (such that VC = 0), and t0 is the time of measurement. 
The current induced by the PVDF sensor is balanced by the op-amp, which outputs a 
voltage that cancels out the capacitor voltage. The output voltage of the charge 
amplifier with respect to the reference voltage is proportional to the charge on the 
feedback capacitor. A resistor is connected in parallel with the feedback capacitor to 
slowly discharge it. This attenuates the integration of very low-frequency signals, but 
preserves the integration of desired signals within the 1-5 Hz range. 

The third stage is a simple amplifier with variable gain. The third stage was not 
used in the final design but helped during prototyping because it allowed the gain to be 
adjusted as needed. 

A photograph of the prototype built to test the CA's operation is shown in Figure 
3. Note that C1 and R3 can be replaced easily, as the prototype contains a 4-pin socket so 
we can experiment with different R-C pairs. The potentiometer, shown on the right of 
Figure 2 and the bottom of Figure 3, is used to adjust the gain of the output stage. 
 

 
Figure 3: Charge Amplifier Prototype 

 
 The charge amplifier was tested with a PVDF sensor placed inside of the heel of a 
shoe. The CA does not integrate the input signal from the PVDF element appreciably for 
low values of R (below 10MΩ) or C (below 10nF). When R or C are low, the charge is 
removed from the capacitor quickly, and the integration is attenuated. Controlled, even 
steps were taken to test the effectiveness of the CA. The CA cannot integrate without a 
feedback capacitor. Even with a feedback capacitor, charge leaks off very quickly when a 
1MΩ resistor is used, canceling out the integration.  
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Figure 4 (left): CA using a 1MΩ resistor and no capacitor 

Figure 5 (right): CA using a 1MΩ resistor and 100pF capacitor 
 
 A larger capacitor is able to retain charge for a longer amount of time. However, 
the amplitude of the integration is lower with large capacitors because more charge needs 
to be displaced to attain the same voltage increase (Q=CV). 
 

 
Figure 6: CA using 1MΩ resistor and 1µF capacitor 

 
 Using a 10MΩ resistor reduces the charge leak from the capacitor, but not 
completely. Taking short steps with the PVDF introduces and removes charge quickly 
enough so that the 10MΩ doesn't draw substantial charge from the capacitor. For long 
steps, however, there is noticeable charge leakage, and on the up-step, the counter-charge 
results in an offset that takes a while to restore. 
 

     
Figure 7 (left): CA using 10MΩ resistor and 100nF capacitor—short steps 
Figure 8 (right): Same CA feedback network—longer steps (note 2s/div) 

 
 Omitting the resistor altogether yields surprisingly clean integration. 
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Figure 9 (left): CA using a 47nF capacitor, and without a resistor. 

Figure 10 (right): CA using a 100nF capacitor, and without a resistor. 
 
 Also, care must be taken not to choose too small a capacitance. If this happens, 
the op-amp may drive the CA into saturation, since for a small capacitor, little charge 
exchange is needed for a large voltage swing. 
 

     
Figure 11 (left): CA using a 100pF capacitor. 
Figure 12 (right): CA using a 1nF capacitor. 

 
 Another problem lies with omitting the shunt resistor across the capacitor. 
Although no drift due to mechanical operation of the PVDF sensor was detected, 
pyroelectric effects caused the CA to drift considerably from the half-source voltage, and 
at times even drove the CA into saturation. This effect is particularly noticeable when the 
user first puts on his/her shoe or takes it off, thereby introducing thermal variation as the 
sensor changes from room temperature to body temperature or vice versa. 
 

 
Figure 13: Removing sensor from shoe: 

CA output, using no resistor and 100nF capacitor. 
 
 This effect is less problematic when a shunt resistor is connected across the 
capacitor. Since the pyroelectric effect is a low-frequency problem, a large RC time 
constant can be used to remove very low frequencies on the order of tenths of Hz. Using 
a 10MΩ resistor eliminates the CA's response to the pyroelectric effect. 
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Figure 14: With a 10MΩ resistor in the feedback 

network, pyroelectric drift is attenuated. 
 
 Despite these low-frequency concerns, the charge amplifier was used for the final 
design because it simplified PIC measurements. The PIC sampled the output of the 
charge amplifier to obtain the force. Using a suitable high-impedance resistor, as much as 
50MΩ -200MΩ, is an effective compromise. Such a high resistance only attenuates 
extremely low frequencies. It is also possible to use a smaller RC feedback circuit on the 
CA. Though this causes distortion on the signal, extracting the integration can be done in 
software by multiplying each previous sample by: 

e-Tsamp/RC  
and subtracting the difference from the next sample. This particular solution has been 
proven in MATLAB, and will be discussed more in-depth in section 5. 
 Of particular interest for childhood bone density studies are measurements of the 
peak force, the average force over the duration of a step, and the amount of time each 
step takes. In the case of a low-frequency offset, as long as the CA has not been driven 
into saturation, the peak-to-peak values are all that is needed to extract useful information 
about the step. This means data resembling Figures 7 and 8 may be useful after all. 
 
2.5 AUSART and Voltage Level Shifter (Serial Module) 
 
The PIC microcontroller can communicate with a personal computer using compatible 
signals, requiring only a voltage-level shifter circuit in between the PIC and computer. 
The AUSART, or Addressable Universal Synchronous/Asynchronous Receiver and 
Transmitter, is set up in software and configures two ports on the PIC, one as a receiver 
(Rx) and another as a transmitter (Tx).  As long as the computer and PIC are configured 
to receive and transmit data at the same number of bits per second, the “baud rate,” no 
common clock or handshaking is necessary for normal two-way communications when 
the module is operating in asynchronous mode. 
 The standard for this asynchronous protocol is to hold the line at a high level until 
a byte is transmitted. This is often referred to as “idle high”. Each byte that is sent in 
either direction begins with a start bit, logic “0”, to notify the target device that a byte is 
coming. Then, at the pre-determined frequency, the bits to be transmitted appear on the 
line, least-significant bit first. A number of test programs were written to utilize the serial 
port along with other features of the device. The following example in Figure 15 
demonstrates a pair of bytes, the second generated by the PIC’s analog-to-digital 
converter (ADC), being sent out of the serial port to the computer. A variable resistor 
connected to provide a range of voltages was connected to one of the PIC’s analog inputs. 
The ADC, which converts a voltage signal to a 10-bit binary number, was set to run 
continuously. After the analog-to-digital conversion completed, the most significant eight 

 11



bits were sent over the serial line. Having this example program readily available 
facilitated later use of both the serial port and ADC. 
 

 
Figure 15: Sending signals 0x09, 0x13 over the serial line 

 
 Beginning with the LSB, the signal can be reversed to obtain: 00001001 
00010011. In hexadecimal, these correspond to 0x09, 0x13. The analog-to-digital 
converter, which will be discussed in subsequent sections, is producing the value: (1 * 2 ^ 
4) + (3 * 2 ^ 0) = 19 in decimal. The first bit, 0x13, is simply a byte that was used to 
signal the receiving program that a series of bytes has ended. For the sake of this 
example, only one byte was sent, the eight most significant bits of the analog-to-digital 
converter. 
 
 An additional piece of hardware that is required for these communications is a 
level shifter, which changes the signal levels from the rs232 (serial communications port) 
to a level the PIC uses. Since the PIC is powered by a small 3.3V lithium button-cell 
battery, it only has a 3.3V source to work with. As a result, the PIC represents a “0” 
digitally by setting a pin to 0V, its low voltage, and a “1” by with a signal around 3.3V, 
its highest available voltage. The rs232 communications port, however, represents a ‘1” 
with -12V and a “0” with +12V. These voltages are outside the ranges which the PIC can 
provide from its power source alone. 
 A small serial module was built that performed these voltage level conversions. 
The MAX231 integrated circuit performs a standard 0-5V to ±12V conversion with 
minimal external hardware. It contains a built-in inverting charge pump, so applying a 
+12V supply voltage to this chip allows a -12V signal to be sent from the MAX231, as 
well. Our PIC circuit, however, uses a 0-3.3V configuration. Therefore, a separate 
conversion must be made with an up-shifter, which converts signals transmitted by the 
PIC from 3.3V to 5V, and a down-shifter, which performs the opposite conversion for 
signals to be received by the PIC. 
 The up-shifter consists of a pair of NPN bipolar transistors each arranged in an 
inverting configuration. A voltage divider at the base of the first transistor halves the 
input voltage. As these transistors generally have a base-emitter junction voltage of about 
.7V at room temperature, the first transistor begins inverting when the input signal 
reaches around 1.4V, about half of the PIC’s 0-3.3V range. Since these are digital signals, 
the temperature dependence of the bipolar transistor’s gain or the saturation current of the 
base-emitter junction are not important. Whether the inverter switches at 1V or 2V or 
anywhere in-between is immaterial; it is only essential that the device shift somewhere 
reasonably in between 0V and 3.3V. The second transistor simply inverts the inverted 
signal presented by the first, preserving the binary value of the original signal. This two-
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inverter configuration reproduces and amplifies these digital signals very reliably over a 
range of frequencies.  
 

 
Figure 16: DC Transfer Function of Digital Level Up-shifter 

 
 Testing has shown that the PIC configuration used for the pediatric dynamometer 
communicates most efficiently at 38.4kBaud, or 38,400 bits per second. Start/stop bits 
must also be transmitted, so each byte send and received is essentially 10 bits. Using a 
function generator, 38.4kBaud transmission with a 3V peak is simulated by a square 
wave signal. Figure 17 shows the input signal on channel 2 and the output of the level 
shifter on channel 1. 
 

 
Figure 17: Digital Level Up-shifter operating at 38.4kHz 

 
 The down-shifter is even simpler, consisting of a zener diode with a 3V drop and 
series resistor. This fundamental design exhibits minimal distortion below 500kHz, which 
is considerably higher than the transmission rates the dynamometer employs. 
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Figure 18: Digital Level Down-Shifter operating at 500kHz 

 
 Creating a permanent design for this device was facilitated by the use of Eagle™ 
Layout Editor software. A schematic of the level shifter’s final design is documented in 
Figure 19. 
 

 
Figure 19: Schematic of Digital Level Shifter (Serial Module) 

 
 The hardware was then arranged using the same software suite. Figure 20 shows 
the final component layout for the serial module. It was milled on a T-Tech numerically 
controlled micro-mill and cut from standard copper-surfaced PCB. 
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Figure 20: Layout of Digital Level Shifter (Serial Module) 

 
 This board was populated with the necessary components and its operation 
verified by testing the communication link between the PIC and a PC in the lab. A photo 
of the completed Serial Module is shown in Figure 21. The circuit board measures less 
than 1.8” x 1.8”. 
 

 
Figure 21: Completed Digital Level Shifter (Serial Module) 

 
 When the pediatric dynamometer is ready to be used for clinical research, it will 
be necessary to produce a number of these Serial Modules, one for each location where 
information will be downloaded from the dynamometer. This digital level shifter can 
operate with a supply ranging from 8 to 12 volts, so a standard 9V battery would be a 
likely candidate due to its ubiquity and low cost. Another alternative is to use a 9V or 
12V DC wall adapter to provide a more reliable and maintenance-free source of power. 
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2.6 Synchronous Serial Communications with EEPROM/Flash 
 
 Microcontrollers frequently communicate with peripheral devices via a protocol 
called Serial Peripheral Interface, or SPI. SPI is similar to the serial protocol used for 
rs232 communications described above, except that SPI is a synchronous serial protocol 
(SSP). It requires a special clock signal (SCK) provided by the PIC in addition to serial 
data in (SDI) and serial data out (SDO). There is one additional signal called chip select 
(CS) which enables the particular device with which the PIC intends to communicate. 
This way, multiple devices can be connected to the SPI bus, and the PIC can specify 
which one it is communicating to by setting the appropriate chip select signals. 
 As an example, the 8-bit character 'W' represented by “01010111” in binary is 
written to an SPI device. Figure 22 shows the serial clock SCK on channel 1 of the 
oscilloscope and SDO on channel 2. A common standard dictates that the data is latched 
to the receiving device on the rising edge of the clock, when SCK switches from low to 
high. An important distinction must be made in the order of bits transmitted in 
synchronous and asynchronous modes: SSP bytes are transferred with the most 
significant bit (MSB) first, while AUSART communications begin with the LSB as 
discussed in section 2.4. 
 

 
Figure 22: Transmission of 'W' via SSP 

 
 Each device connected to a microcontroller has its own dedicated chip select 
signal. By convention, CS is normally high when the microcontroller is not 
communicating with the device. Once the microcontroller sets CS low, instructions and 
data can be exchanged with the peripheral. Figure 23 shows the chip select signal (CS, 
channel 2) going low while the clock signal (SCK, channel 1) oscillates 8 times, 
indicating transmission a byte to a peripheral device. 
 

 
Figure 23: CS Low as SCK oscillates 8 times 
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 The SPI protocol allowed the PIC to read and write a peripheral memory chip 
serially. Two devices were used for testing the SSP module in software: first, an Atmel 
25256 EEPROM was used because of its higher supply voltage specification and larger 
package, which made it easier to connect to our prototype. The ATMEL has a 256kbit 
capacity. The Spansion S25FL016A serial flash chip has a 16Mbit capacity and is much 
smaller in size than the Atmel model, making it an attractive solution for the data storage 
needs of the pediatric dynamometer. Because of its small size and use of surface mount 
technology, though, the Spansion flash was used only in later prototypes. 
 The Atmel and Spansion memories first receive instructions from the 
microcontroller. These instructions are eight bit codes that initiate a certain operation, 
such as read, write, erase, and write-enable/disable. The instruction may be followed by 
data for appropriate instructions. Read and write instructions require a 24-bit address 
indicating where the data will be read from or written to. Erase and write-enable 
instructions do not require a specific address. 
 Another subtle difference between the Atmel 25256 and Spansion S25FL016A 
exists in their fabrication technology: the Atmel memory is EEPROM, electrically-
erasable programmable read-only memory, while the Spansion device is flash memory. 
The Atmel device can be re-written to freely, because the internal circuitry automatically 
erases a block of memory when a write instruction is received. The Spansion device can 
only write 0's to memory blocks, not 1's. In order to re-write 1's over existing 0's, sectors 
of memory must first be cleared. This required writing a software routine that cleared the 
Spansion flash memory upon receiving instruction. 
 
2.7 Integrating AUSART/SSP Components in Software 
 
It is necessary for the dynamometer to be able to transfer data from the serial flash 
memory to the serial port of a computer. General-purpose functions were written to 
communicate with a device connected to the SSP bus and a computer connected to the 
AUSART. Additional functions enable and disable the SSP and AUSART interfaces as 
needed. The PIC16F88 cannot use the SSP and AUSART features simultaneously, as pin 
8 of the microcontroller can act exclusively as an input Rx from the AUSART module or 
an output SDO to the SSP module. 
 Fortunately, disabling one protocol frees up the resources to enable the other. 
Continuously switching between SSP and AUSART is not as intuitive as it may seem, 
and requires the PIC to carefully manage the states of the pins and features of the 
protocols so that no conflicts occur. The following four functions oversee this operation: 
enableAUS(), disableAUS(), enableSSP(), and disableSSP(). 
 

 
Table 1: enableAUS() method 

// Set up reception/transmission from serial port 
void enableAUS(){ 
 // Set up PORTB 
 PORTB.2 = 1; // Remove artifact of SSP 
 TRISB.5 = 0; // PortB5 output for Tx 
 TRISB.2 = 1; // PortB2 input for Rx 
 // Set up AUSART 
 TXEN = 1; // Enable Transmission 
 CREN = 1; // Enable Continuous Receive 
 SPEN = 1; // Enable Port 
 RCIF = 0; // Clear Serial Receive Interrupt Flag 
 RCIE = 1; // Enable Serial Receive Interrupt 
} 
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 Before the AUSART can be used, it is necessary to configure the pins on the PIC. 
Since asynchronous serial communications are idle high, it is important that the PIC 
begins AUSART mode with the Tx line on PORTB.2 high; otherwise, the PIC will 
interpret a low signal as a “start bit” as explained in 2.5. Furthermore, it is necessary to 
set PORTB.5 as an output Tx to the serial module and PORTB.2 as an input Rx from the 
serial module. 
 The last five lines enable specific features of the AUSART. Transmission and 
reception must be enabled before use; theoretically the PIC can use the asynchronous 
serial interface as only a receiver or transmitter, but the dynamometer uses two-way 
communication with the PC. When in communications mode, the dynamometer uses an 
interrupt to receive data from the PC: whatever the PIC is doing is interrupted when a 
byte is received on the serial line. The two modes of the pediatric dynamometer will be 
discussed in greater detail in the software results section, 3.2. 
 

 
Table 2: disableAUS() method 

// Stop receiving/transmitting from serial port 
void disableAUS(){ 
 while(!TRMT); // Ensures that all 
   // transmission is complete 
 PORTB.5 = 1; // Trick rs232 into thinking 
   // there's a signal 
 RCIE = 0; // Disable Serial Receive Interrupt 
 TXEN = 0; // Disable Transmission 
 CREN = 0; // Disable Continuous Receive 
 SPEN = 0; // Disable Port 
} 

 
 Disabling the AUSART interface requires freeing up the resources needed by the 
SSP interface. Before this can begin, it is salutary to ensure that the serial port has 
finished transmitting its last byte of data. This is done by repeatedly polling the bit TRMT 
until it is set (while(!TRMT);). If the serial port is turned off before transmission has 
completed, important data may be lost. 
 Even after disabling the AUSART, the serial module is still connected to the PIC. 
The output line (Tx, PORTB.5) to the computer must be held high, or else the computer 
will interpret the low state as a start bit and receive spurious data (usually 0x00, a zero 
byte). This is done by setting the pin high (PORTB.5 = 1;) before disabling the 
AUSART. 
 In a manner similar to enabling the port, each of the port's features must be 
disabled or else unwanted operation may occur. Particularly, disabling serial receive 
interrupt (RCIE = 0;) will prevent the AUSART from receiving data on PORTB.2. Since 
PORTB.2 is also used as SDO, data sent from the PIC to the serial flash memory will be 
received by the PIC's AUSART unless serial receive is disabled. If serial receive is not 
disabled, the next time AUSART is enabled, the SDO data will have been read into the 
AUSART receive flag, causing unpredictable results. 
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Table 3: enableSSP() method 

// Synchronous serial port for off-chip EEPROM 
void enableSSP(){ 
 // Set up PORTB 
 TRISB.1 = 1; // PortB1 input for SDI 
 TRISB.2 = 0; // PortB2 output for SDO 
 TRISB.4 = 0; // PortB4 output for SCK 
 // Set up SSP 
 SSPEN = 1; // Enable SSP 
// SSPIE = 1; // Enable SSP Interrupt 
} 

 
 Enabling the SSP interface requires fewer instructions than enabling the 
AUSART. Again, the appropriate PORTB  pins of the PIC need to be set to input/output 
for proper SPI operation. One line (SSPEN = 1;) enables the SSP interface. Another 
optional line (SSPIE = 1;) can be used to enable interrupts whenever an SPI byte 
transmission is complete. The pediatric dynamometer uses polling with the SPI interface 
because it is less of a priority than sampling the ADC and reading from the serial port, 
which must be done in real-time. 
 

 
Table 4: disableSSP() method 

void disableSSP(){ 
 PORTB.4 = 0; // Clock at a low level 
 SSPEN = 0;  // Disable SSP 
// SSPIE = 0;  // Disable SSP Interrupt 
} 

 
 Finally, before disabling SSP interface, it is necessary to ensure that the clock 
SCK remains low while SSP is not in use. Disabling SSP while PORTB.4 is set high will 
result in a rising edge, which initiates data reception on the peripheral device. After 
clearing bit PORTB.4, the SPI can then be disabled by clearing (SSPEN = 0;). 
 Armed with these four functions, the PIC can interface with the serial port of the 
computer and the serial flash memory by switching modes as needed. Table 5 shows an 
example of how the pediatric dynamometer sends the contents of the flash memory to the 
computer one byte at a time. 
 

 
Table 5: Reading from the serial flash memory 

 enableSSP(); 
 // Begin reading at address 0 
 begin_InstSSP 
 sendByteSSP(READ); 
 sendByteSSP(0x00); 
 sendByteSSP(0x00); 
 sendByteSSP(0x00); 
 // Read each byte and write to terminal 
 // until we receive a blank byte 
 do { 
  readBuf = receiveByteSSP(); 
  disableSSP(); 
  enableAUS(); 
  serialOut(readBuf); 
  disableAUS(); 
  enableSSP(); 
 } while(readBuf != 0xFF); 
 disableSSP(); 
 end_InstSSP 
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 SSP must first be enabled. The PIC then sets chip select low in the instruction 
begin_InstSSP. Once CS is low, the serial flash memory begins receiving instructions. 
The next four lines send four bytes of data to the memory: first, a read instruction is sent, 
followed by the twenty-two bit address 0x000000, the very beginning of the flash 
memory. After these four bytes are sent, the memory sends bytes as long as the clock 
SCK keeps oscillating and CS remains low. The line (readBuf = receiveByteSSP();) 
stores a byte sent by the memory into the buffer readBuf. Then, SSP is disabled and 
AUSART is enabled. The contents of the buffer is sent out to the serial port in the 
statement (serialOut(readBuf);).  Once transmission of this byte is complete, the 
AUSART is disabled, SSP is enabled, and the cycle can continue. Before it does, 
however, the PIC checks the buffer readBuf to see if it is 0xFF, which in binary is 
11111111. All 1's is characteristic of flash memory that has either not been written to or 
has been cleared. The PIC interprets this condition as the end of data stored in memory 
and stops reading. SSP is disabled and the CS signal is set high to indicate the end of the 
read instruction. 
 The read/write cycle was demonstrated using the HyperTerminal© program. A 
sequence similar to the one in Table 5 was used to write a character to the flash memory 
every time a character was typed to the terminal. Pressing Ctrl + R initiates the memory 
dump shown in Table 5. 
 

 
Figure 24: Screen capture of serial flash memory I/O 

 
3. Final Results 
3.1 Hardware Design Results 
 
This summer's work resulted in a fully functional pediatric dynamometer. The final 
design consumed less space than any previous design. Figure 25 shows the schematic of 
the dynamometer in Eagle Layout Editor©. 
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Figure 25: Schematic of Pediatric Dynamometer 

 
 A 3.3V lithium cell provides power to this circuit, shown on the upper right. The 
charge amplifier, shown in the top right corner of Figure 25, does not have a gain stage 
like the one discussed in Section 2.4. Using a 47nF capacitor in the feedback loop of the 
charge amplifier provided sufficient voltage swing for mechanical stress on the PVDF 
sensor without saturating the amplifier. A 200MΩ resistor is used in the feedback loop to 
minimize drift while attenuating very low frequency signals. Note that both the half-
source reference and the output of the charge amplifier are connected to the PIC16F88. 
These are analog inputs. The PIC's ADC samples both the half-source reference and the 
output of the charge amplifier. A comparison is done so that if the reference voltage is 
not exactly 3.3V/2 = 1.65V, the PIC can still calculate the CA's output relative to the 
reference. How this is done in software will be discussed in more detail in section 3.2. 
 There are two inputs to this system; the PVDF sensor is connected to the two pins 
on the right side of the charge amplifier. The bottom of Figure 25 shows a three-pin 
connector marked “rs232 out/in” to which the serial module is connected. The 1kΩ 
resistor (R4) between pin 3 of this connector and pin 8 (Rx) of the PIC serves to prevent 
the signal from the serial module from interfering with the SDO signal from the PIC in 
SPI mode. When the AUSART is enabled, pin 8 of the PIC becomes a high-impedance 
input and the 1kΩ resistor does not attenuate the signal from the serial module. When the 
PIC is in SPI mode, pin 8 becomes a low-impedance output providing SDO data to the 
serial flash memory. The serial module still provides an idle-high signal, but the 1kΩ 
resistor prevents the signals from loading each other. Figure 26 shows the Rx/SDO pin 8 
of the PIC on channel 1. Note how both AUSART and SSP signals are at full strength. 
Channel 2 shows the signal at pin 3 of the “rs232 out/in” connector. In this case, only the 
AUSART signal is preserved and the SPI signal is attenuated. 
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Figure 26: Comparison of SDO, Rx signals 

  
 The 100kΩ resistor between ground and pin 8 allows the PIC to detect a serial 
connection. When SSP is disabled and PORTB.2 is an input, the 100kΩ resistor to ground 
pulls this input low. When the serial module is connected, the idle-high signal from the 
serial module pulls high, directing the PIC to stop sampling the ADC and enter 
communications mode. A discussion of the two modes is presented in section 3.2. 
 
To test the pediatric dynamometer's design, a prototype was milled on the T-Tech 5000 
CNC milling machine and populated with surface-mount technology (SMT) components. 
 

      
Figures 27, 28: Top and bottom of pediatric dynamometer prototype 

 
 The prototype shown in Figures 27 and 28 has some extra pins for programming 
and debugging the PIC and for an external power source. These photos were taken while 
testing the AUSART interface, when the serial flash memory had not yet been soldered 
on. The prototype measures 1.215” x 1.335” (3.086cm x 3.391). A photo comparing the 
2004-2005 and 2005-2006 Senior Design projects with this summer's prototype is shown 
in Figure 29. Space was saved by avoiding use of a timing crystal, since the PIC contains 
its own internal RC oscillator that is satisfactory for the dynamometer. 
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Figure 29: Pediatric Dynamometers: 

(left) Senior Design 2004-2005 
(center) Senior Design 2005-2006 
(right) Sunfest 2006—Prototype 

 
 The digital components of the prototype function as expected. The PIC is able to 
read and write the Spansion serial flash memory and communicate with a personal 
computer via the serial module. The analog components are more sensitive to slight 
imperfections in fabrication and sometimes did not perform as desired in the prototype. 
The half-source reference circuit provided a 1.63V reference, which is satisfactory. The 
charge amplifier worked but some connection in the circuit introduced a parasitic 
resistance much lower than the desired 200MΩ. As a result, the charge amplifier suffered 
from decay signals similar to what is shown in Figure 8. Future options for preventing 
this from occurring include placing a small guard ring around the charge amplifier 
feedback loop and using “rub out” to remove all of the copper from the area surrounding 
the charge amplifier, minimizing the risk of parasitic impedances. 
 Removing the test and power pins from the prototype reduces the size of the 
board. Since only two operational amplifiers are needed, the LT1112 is more space-
efficient than the LT1114 quad op-amp used by the prototype. The resulting pediatric 
dynamometer design could be used in the bone health studies outlined in the background. 
Figures 30 and 31 show the layout of the final design of the pediatric dynamometer. The 
board measures 1.135” x 1.150”. 
 

        
Figure 30 (left): Top layer of pediatric dynamometer 

Figure 31 (right): Bottom layer. Final 2006 SUNFEST design. 
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 The battery used in this design cannot provide sufficient power to the pediatric 
dynamometer for more than two days. Using a larger lithium battery like the one used by 
the 2005-2006 Senior Design team should allow this year's design to run for a week or 
more. Further work can be done to improve this year's design by incorporating a larger 
battery. Care must be taken to keep the design small in size. 
 
3.2 Software Design Results 
 
 The pediatric dynamometer operates in two modes: sampling mode and 
communications mode. In sampling mode, the PIC consumes less power by operating at a 
lower frequency, 250kHz. It samples the ADC connected to the charge amplifier 200 
times per second and the ADC connected to the half-source reference every 256 cycles 
(roughly once every 1.28s). Every sample, the PIC compares the current measurement 
with previous measurements and updates the appropriate data as necessary. 
 The PIC's goal is to determine the beginning of a step, record important data for 
that step, and determine the end of the step, writing important data to the flash memory. 
This includes: a timestamp of when the step started, the duration of time the step lasted, 
the average force on the PVDF sensor, and the max force over the period of the step. 
Table 6 is a flow chart that outlines this operation. 
 

 
Table 6: Sampling mode algorithm 

 
 The PIC determines the beginning of a step by comparing the ADC of the CA 
with the ADC of the half-source reference. If the CA’s value is above the reference by a 
set threshold, the PIC interprets it as the beginning of a step and records the timestamp. 
Processing of the max and accumulated force continues every sample. Once the CA’s 
measurement is below a different threshold, the PIC detects the end of a step, and 
calculates the length of the step by subtracting the timestamp from the current time. The 
threshold for detecting the beginning of a step is higher than the threshold for the end of a 
step. Hysteresis prevents the PIC from detecting a small variation above the threshold as 
a complete step. 

After every step, the PIC writes a 10-byte packet of information to the flash 
memory. The first three bytes encompass the timestamp, represented in 5ms increments 

 24



from the time the PIC begins sampling. This counter overflows once every 23.3 hours, 
almost once a day, but upon inspection of the data it should be evident where one day 
ends and another begins. The next two bytes contains the duration of the step in 5ms 
increments. The max step length is therefore 327.7 seconds. This is followed by a three-
byte number that represents the accumulated sum of each ADC measurement made 
during the step. This number can be divided by the two-byte step length to obtain the 
average force. The PIC does not support division in hardware, and software division 
takes hundreds of cycles. Therefore, it is preferred to carry out the average force 
calculations on the computer once the data has been uploaded. Finally, the last two bytes 
contain the maximum ADC measurement over the course of the step, corresponding to 
the maximum force. 
 Once a serial connection is detected, the PIC immediately stops sampling the 
ADC, and switches to 8MHz operation. At this speed, the PIC can communicate with a 
PC's serial port at 34.8kbaud with perfect data fidelity. In communications mode the PIC 
can receive the following instructions: dump the raw contents of the flash memory (Ctrl + 
R), begin a hex dump of the flash memory (Ctrl + X), clear the flash memory (Ctrl + E), 
and begin sampling (Ctrl + S). Using HyperTerminal©, each of these operations was 
tested. 
 If the user enters Ctrl + S, the PIC slows down to 250kHz, and waits for the user 
to detach the serial module. Once this happens, sampling proceeds until the cable is 
connected again. If the user wishes to erase the flash memory and enters Ctrl + E, the PIC 
first prompts the user for confirmation, and only proceeds if the user presses 'y'. 
 By the end of the summer, the software interface between the PIC and the 
computer worked perfectly. The PIC provides a raw data or hex dump of the contents of 
the flash memory upon request. A calibration mode was added to test the operation of the 
algorithm in Table 6. Pressing Ctrl + C at the terminal begins real-time sampling of the 
ADC. Measurements of the half-source reference and charge amplifier are continually 
updated on the screen along with the accumulated force for the current step and max 
force. An 'S' appears at the end of the data whenever the PIC detects the beginning of a 
step, and disappears at the end of the step. Connecting a small PVDF sensor to the board 
in Figures 27 and 28 and gently deflecting it allowed testing of both the hardware and the 
algorithm when in calibration mode. 
 One aspect of the software that needs more work is writing to the flash memory in 
sampling mode. The flash memory can be written to using other programs that run in 
8MHz mode, but for some unknown reason, the flash memory does not receive data when 
the PIC is in sampling mode. Inspection of the CS, SCK, and SDO signals with an 
oscilloscope verify that the PIC does operate correctly by writing to the flash memory at 
the end of a step; however, the flash memory is empty or contains old data whenever the 
PIC tries to read it after exiting sampling mode. Future work will require isolating this 
software problem and fixing it so that data acquired in sampling mode can be recorded on  
the flash memory. 
 
4. Conclusions 
 
As a result of this summer's work, a functioning pediatric dynamometer was developed. 
The digital end of the hardware prototype functioned as desired. The basis for 
communicating among the PIC, a personal computer, and flash memory has been 
established. The current configuration has enough storage capacity to record 200,000 
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steps, enough for weeks or even months of measurements. Furthermore, the current 
digital subsystem can be used for other types of studies, since the hardware for recording 
data, storing it, and retrieving it does not depend on the type of data being recorded. 
 The analog circuitry has been reconsidered this summer. Adding the analog 
charge amplifier allowed us to remove the signal conditioning circuits used by the two 
previous senior design teams—saving the space of an 8-pin instrumentation amplifier. 
The CA also served as an alternative to software integration. It made prototyping easier, 
since connecting an oscilloscope probe to the output of the CA displayed a signal 
proportional to the force on a scope; software integration required the integral to be sent 
over the serial port into a computer and displayed in software, a more time consuming 
proposition. The CA introduced its own set of problems, not the least of which was trying 
to attenuate low-frequency signals like the pyroelectric effect while keeping the RC time 
constant high enough not to leak too much charge off of the capacitor. The CA built on 
our final prototype operated with unexpectedly high parasitic charge loss, which was not 
a problem in the large CA built on a separate board discussed in Section 2.4. Ideally, a 
controlled experiment should compare the results of software integration and the charge 
amplifier. 
 Another issue to take into consideration is that when the charge amplifier contains 
a resistor in the feedback loop, charge will be drawn off of all signals, including higher 
frequency signals. This effect is less immediately evident with higher frequency signals. 
As time goes on, the charge amplifier will settle to a state where the average signal is the 
half-source reference. This means that after minutes of walking, steps will no longer 
introduce a signal beginning at the half-source reference; the signal will settle to a level 
below the half-source reference such that if the signal is plotted in time, the area above 
the half-source reference will equal the area below it. This isn't necessarily a problem, 
except for the fact that the current algorithm measures all signals with respect to the half-
source reference. Further work should include sampling the minimum force and taking 
the average with respect to it. 
 Much was learned over the course of this summer, as the project required reading 
numerous datasheets for specifications and instructions, milling circuit boards for 
prototypes, and programming the PIC microcontroller in both C and assembly. The PIC 
and Spansion flash memory often acted unexpectedly, but consulting the datasheet 
frequently clarified the issue. Using the T-Tech 5000 CNC milling machine became 
easier with practice; fortunately, since even slight changes in the design required building 
new prototypes, there were plenty of opportunities. Circuit layout in Eagle was another 
skill that was developed over time, as the software takes a bit of getting used to. 
 The pediatric dynamometer is ready to enter the final stages of design and testing. 
Once the last few software bugs are ironed out, it will be ready for testing in the field. 
Controlled experiments can be done to acquire calibration data as needed. A variety of 
batteries can be tested with the dynamometer, allowing designers to make an informed 
decision on the best overall cell in terms of cost, size, and capacity. Once these hurdles 
are overcome, the pediatric dynamometer will be ready for mass production and use in 
pediatric bone health studies. 
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Appendix A. Recommendations for Future Work 
A.1 Digital Signal Regression 
 
 After using a “charge amplifier” to determine the amount of deflection done on 
the PVDF sensor, it became clear that two conflicting goals arose from the RC feedback 
loop. A small time constant ensured that the system would not drift away from the 1.65V 
reference, yet a substantial amount of charge bled off of the capacitor very quickly, 
canceling out the integration. On the other hand, a large time constant led to fewer losses 
during integration, but whenever the PVDF sensor returned to its original position, the 
signal took a very long time to return to the 1.65V reference. 
 
 This situation can be modeled in Matlab, fabricating a few simple mathematical 
examples that are theoretically accurate. Figure A1 shows a pair of unit impulses, one 
with amplitude +1 and the other with amplitude -1, 50 samples apart. In this case, the PIC 
will take 200 samples/second, so 50 samples corresponds to a quarter-second. The second 
graph shows the signal after integration. 
 

 
Figure A1: Integral of a “unit impulse” 

 
 Taking into account the exponential decay of the charge stored in the capacitor, 
the exponential function e-t/RC is loaded into an array, where the time constant is .796. 
Matlab's convolution function simulates the integration with this exponential decay taken 
into account. Integrating with respect to time in the continuous domain is essentially the 
same as taking the convolution of the “unit step” function in discrete domain with respect 
to samples. 
 

 29



 
Figure A2: The RC time constant degrades charge 

 
 The RC parasitic effect degrades the integration from what it should be, as shown 
in Figure A1. In particular, right after the first impulse, charge is lost from the capacitor 
and after the second pulse; it takes very long for the signal to return to zero.
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 Two unit impulses are hardly a general case, so a more continuous series of inputs 
is considered in Figure A3. The next example shows how the system responds to a pair of 
triangular current pulses close together. 
 

 
Figure A3: Triangular impulse 

 
 The analog signal is not that distorted in this case. However, the rising and falling 
pulses occur very closely together. This might be characteristic of a quick step, but there 
is no guarantee that all steps will be like this. Longer steps will have the rising and falling 
impulses further apart, and as a result the feedback loop will have more time to lose 
charge. 
 In this case, the degradation of the data is more severe. It will be impossible to 
directly apply this sampled data to the pediatric dynamometer. 
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Figure A4: Separated impulses 

 
 The effects of convolution can be reversed using a function called deconvolution, 
in the Matlab function deconv. It is possible to reconstruct the original function from the 
convoluted result if the response of the system is known: 
 

 
Figure A5: Reconstruction of original data
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 Unfortunately, there are two problems with this solution: deconvolution requires a 
fair amount of processing power, and would require the PIC to do a lot of computation, if 
real-time deconvolution were even possible. The other problem, more importantly, is that 
the deconvolution of the analog integration is completely useless to us, as it contains 
nothing more than the data from the sensor; we might as well just read that in directly. 
 Fortunately, a small algorithm written for Matlab takes the distorted integrand and 
performs a regression on it, expecting the decay due to the RC time constant. 
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%   Armand O'Donnell 
%   June 2, 2006 
%   SUNFEST, Pediatric Dynamometer 
%   DeconvCA, an algorithm to perform data regression on a signal
%   whose integral has undergone exponential decay. 
 
%   RC Time constant, dependent on amplifier feedback loop 
RC = .796; % for Rf = 700kOhm, Cf = 1uF 
 
reconInt(1) = 0; 
 
for iCnt = 2:1000; 
expNext = y(iCnt-1)*exp(-.005/RC); 
if y(iCnt) < (expNext - .001) | y(iCnt) > (expNext + .001) 
reconInt(iCnt) = reconInt(iCnt - 1) + (y(iCnt)-expNext); 
else 
reconInt(iCnt) = reconInt(iCnt - 1); 
end 
end 
 
clear expNext; 
 
Table A1: DeconvCA.m 

 

few advantages of this code are as follows: first of all, although this example 
 the next expected input from the value of e-.005/RC, one could easily arrange the 
at the program never needs to calculate the exponent. For each iteration, a 
-.005/RC will be multiplied to the value calculated in the former iteration. If there 
icant discrepancy, it must be due to a signal from the PVDF sensor; so the 
 adjusted accordingly. One can easily change the RC time constant by altering 
ne of code. Although the program uses intervals of .005 seconds to correlate 
00 samples/second, the rate could also be changed with minimal code 
 
is program was run on the distorted integral on the bottom of Figure A4 and is 
 to the theoretical (fully digital) integration. As far as I am concerned, the 
 produces a result that is strikingly similar to what we are looking for: 
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Figure A6: Regression from distorted integral to reconstructed integral. 

 
 The next step is to figure out the effect of an incorrect RC time constant. Since 
each iteration multiplies the former by the exponent, the algorithm is somewhat sensitive 
to errors in the exponent. This produces an offset so that the error “corrects” itself by 
compensating either above or below center in the steady state. 
 

 
Figure A7: System response with incorrect RC time constants 

 
 Figure A7 shows that the signal only produces significant offset for RC time 
constants more than 10% outside of the true value. Otherwise, the small offset produced 
is negligible. Components within 5% of the rated value are readily available, in which 
case the RC constant can be measured experimentally and assumed to be the same for all 
devices made. Furthermore, it should be possible to write a module in the software that 
calibrates the time constant to match that of the analog charge amplifier device. 
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A.2 PC Software Component 
 
The PIC's communication with the PC has been proven with a common serial terminal 
program. This is fine in the lab, but medical researchers will desire more user-friendly 
software. Furthermore, the terminal program is incapable of storing data in a file for 
processing or later use. An appropriate software interface must be written to accomplish 
these tasks. 
 Perhaps a Java graphical program would be a practical solution. Java is preferred 
because it is compatible across platforms. A graphical user interface can feature function 
buttons such as “read flash”, “erase flash”, and “begin sampling”. Pressing one of these 
buttons would send a signal to the PIC and initiate the corresponding function. 
 The Java program would also be able to capture the raw data dump from the PIC, 
process the data into decimal values, and store the measurements in a standard format. 
For example, the comma-separated values (*.csv) format can be used by a number of 
spreadsheet programs, and a little formatting would allow scientific software such as 
Matlab to do statistical analysis on the data presented.

 35



Appendix B. Source Code listing 
 
/* 
 Armand O'Donnell 
 July 25, 2006 
 Sunfest-University of Pennylvania 
 Proj12ADCStore.c 
 
 This software can be used on a fully functional pediatric 
 dynamometer. The PIC samples the ADC 200 times per second, 
 and can figure out when a step begins and ends. When a 
 step begins, a timestamp is set. A summation of the force 
 begins, so that the average force can be calculated. The 
 max force is also documented here. 
 
 At the end of a step, the statistics for that particular 
 step are saved to the EEPROM. 
 
 When a serial module is connected to the unit, the clock 
 frequency is increased to 8MHz and the device enters 
 serial communications mode. In this setting, the PIC can 
 communicate with a personal computer. The following 
 control codes bring about the corresponding functions: 
 
 Ctrl + R: Raw dump of EEPROM data. This is the fastest 
 method of reading the pediatric dynamometer, but the 
 data is unreadable on a terminal; instead, it should be 
 read by a special program used for interfacing with the 
 dynamometer. Ideally, it could create a list of 
 measurements stored in a comma-separated values file (.csv). 
 This can be read into an Excel spreadsheet or Matlab 
 program for proper data analysis. 
 
 Ctrl + X: Hex dump of EEPROM data. The read information 
 will be displayed on a terminal screen, one line of data 
 corresponding to a step in the following format: 
 BBBBBB LLLL AAAAAA MMMM 
 B - Beginning timestamp in 5ms units 
 L - Length of step in 5ms increments 
 A - accumulated force over duration of step 
 M - max force measurement during step. 
 
 Ctrl + S: Sample mode. PIC will switch to 250kHz mode, wait 
 for serial module to be removed, then it will start 
 sampling ADC continuously, in data acquisition mode 
 
 Ctrl + E: Erases entire EEPROM. PIC will poll EEPROM's 
 status register once a second until EEPROM signals that 
 erasure is complete. This key combination also clears a 
 number of variables, like the master timer, so that the 
 data acquisition can begin from scratch. 
 
 Uses a PIC16F88, a Spansion S25FL016A EEPROM or Atmel 
 25256 Serial EEPROM, and a properly assembled charge 
 amplifier. 
*/ 
 
// Interrupt handler library 
#include "int16CXX.h" 
 
// Spansion S25FL016A Serial Memory Programming Codes 
#define WREN 0x06  // Write enable 
#define WRDI 0x04  // Write disable 
#define READ 0x03  // Read data bytes 
#define SE 0xD8  // Sector erase 
#define BE 0xC7  // Bulk (chip) erase 
#define RDSR 0x05  // Read Status Register 
#define WRSR 0x01  // Write to Status Register 
#define PP 0x02  // Page program 
 
// Chip select pin, drive low to use memory 
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#pragma bit CS @ PORTB.0  
 
// Chip select low to initiate instruction to EEPROM 
#define begin_InstSSP CS = 0;\ 
      nop();\ 
      nop();\ 
      nop(); 
 
// Notifies EEPROM of end of instruction 
#define end_InstSSP  nop();\ 
      nop();\ 
      nop();\ 
      CS = 1; 
 
bit sample_mode_flag; // 0 for serial comms mode, 1 for sampling mode 
bit write_ready; // Signals that a step is ready to be written to EEPROM 
bit insideStepFlag; // Currently sampling a step or not? 
long ADCData; // 16-bit variable containing 10-bit result of last ADC 
uns24 masterTimer; // Will oversee timestamp implementation, incremented every 5ms 
uns24 stepStartTime; // Timestamp contents at beginning of current step 
long calData; // Digital representation of half-source reference 
long relSample; // ADC measurement of Charge Amplifier relative to calData 
long forceMax; // Max relative ADC measurement for current step 
uns24 forceAccum; // Summation of CA measurements, used to calculate average on PC 
 
// Temporary variables for writing to EEPROM 
uns16 wr_stepLength;  // Number of 5ms cycles for previous step 
uns24 wr_stepStartTime; 
uns24 wr_forceAccum; 
long wr_forceMax; 
 
/* 
 ADC units (about 3mv) of high/low threshold for signal to be considered a step 
 Uses hysterisis: if ADC signal is STEPHIGHTH above calData, begin measuring inside 
 of a step. Continue until signal is STEPLOWTH above calData. 
*/ 
#define STEPLOWTH 10 
#define STEPHIGHTH 20 
 
 
// Pre-define serial I/O functions 
char serialIn; 
void serialOut(uns8 txByte); 
void enableAUS(); 
void disableAUS(); 
void enableSSP(); 
void disableSSP(); 
void sendByteSSP(char wrData); 
char receiveByteSSP(); 
 
// Hexadecimal formatting functions for hex dump 
char hiHex(char binData); 
char lowHex(char binData); 
 
#pragma origin 4 
interrupt serverX(){ 
 int_save_registers; 
 
 // Serial Port Receive Interrupt 
 if(RCIF){ 
  // Receive input byte 
  serialIn=RCREG; 
  RCIF = 0; // Clear USART Receive Flag 
 } 
 
 // Analog-to-Digital Conversion Completion Interrupt 
 if(ADIF && ADIE){ 
 
  ADIF = 0; // Clear ADC flag 
 
  // Read from ADC 
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  ADCData.low8 = ADRESL; 
  ADCData.high8 = ADRESH; 
 
  // ADCON0.3 -> AN1 selected, sample is from Charge amplifier 
  if(ADCON0.3){ 
   // Calculate ADC relative to calibration 
   relSample = ADCData - calData; 
 
   // If not yet inside of a step and threshold is reached 
   if(!insideStepFlag && (relSample > STEPHIGHTH)){ 
    // Initialize accumulators for new step 
    insideStepFlag = 1; 
    stepStartTime = masterTimer; 
    forceAccum = 0; 
    forceMax = 0; 
   } 
 
   // If currently inside of a step: 
   if(insideStepFlag){ 
    // update accumulator with current force 
    forceAccum += relSample; 
    // test upper bound 
    if(relSample > forceMax) 
     forceMax = relSample; 
    // end of step? 
    if(relSample < STEPLOWTH){ 
     // Bail if still writing to EEPROM 
     if(!write_ready){ 
      insideStepFlag = 0; 
      // Store useful info into temp variables 
      wr_stepStartTime = stepStartTime; 
      wr_stepLength = masterTimer - stepStartTime; 
      wr_forceAccum = forceAccum; 
      wr_forceMax = forceMax; 
      // Signal EEPROM write 
      write_ready = 1; 
     } 
    } 
   } 
    
   // Every 256 cycles, sample half-source reference 
   if(masterTimer.low8 == 0){ 
    ADCON0.3 = 0; // Switch to AN0 for ADC 
    GO = 1; // Begin ADC for AN0 
   } 
  } 
 
  // !ADCON0.3 -> AN0 selected, sample is half-source voltage 
  else{ 
   // Update calibration data 
   calData = ADCData; 
   ADCON0.3 = 1; // Next sample from AN1, Charge Amplifier 
  } 
 }    
 
 // Timer1 overflow interrupt 
 if(TMR1IF && TMR1IE){ 
 
  // Next int in 5ms (312 cycles for 250 kHz) 
  TMR1L = 0xC8; 
  TMR1H = 0xFE; 
 
  // Increment timestamp 
  masterTimer++; 
 
  // Begin an A/D conversion 
  GO = 1; 
 
  TMR1IF = 0; 
 } 
 

 38



 int_restore_registers; 
} 
 
 
// Send to rs232 chip (MAX231) 
void serialOut(uns8 txByte){ 
 while(!TXIF);  // Check to see if buffer is Empty 
 TXREG = txByte; // Transmit data from ADC to AUSART 
} 
 
// Set up reception/transmission from serial port 
void enableAUS(){ 
 // Set up PORTB 
 PORTB.2 = 1;  // Remove artifact of SSP 
 TRISB.5 = 0;  // PortB5 output for Tx 
 TRISB.2 = 1;  // PortB2 input for Rx 
 // Set up AUSART 
 TXEN = 1;  // Enable Transmission 
 CREN = 1;  // Enable Continuous Receive 
 SPEN = 1;  // Enable Port 
 RCIF = 0;  // Clear Serial Receive Interrupt Flag 
 RCIE = 1;  // Enable Serial Receive Interrupt 
} 
 
// Stop receiving/transmitting from serial port 
void disableAUS(){ 
 while(!TRMT);  // Ensures that all transmission is complete 
 PORTB.5 = 1;  // Trick rs232 into thinking there's no signal 
 RCIE = 0;  // Disable Serial Receive Interrupt 
 TXEN = 0;  // Disable Transmission 
 CREN = 0;  // Disable Continuous Receive 
 SPEN = 0;  // Disable Port 
} 
 
// Synchronous serial port for off-chip EEPROM 
void enableSSP(){ 
 // Set up PORTB 
 TRISB.1 = 1;  // PortB1 input for SDI 
 TRISB.2 = 0;  // PortB2 output for SDO 
 TRISB.4 = 0;  // PortB4 output for SCK 
 // Set up SSP 
 SSPEN = 1;  // Enable SSP 
// SSPIE = 1;  // Enable SSP Interrupt 
} 
 
void disableSSP(){ 
 PORTB.4 = 0;  // Clock at a low level 
 SSPEN = 0;  // Disable SSP 
// SSPIE = 0;  // Disable SSP Interrupt 
} 
 
void sendByteSSP(char wrData){ 
 SSPBUF = wrData; 
 while(!BF); 
} 
 
char receiveByteSSP(){ 
 SSPBUF = 0x00; // Dummy value 
 while(!BF); 
 return SSPBUF; 
} 
 
// High 4 bits to hex character 
char hiHex(char binData){ 
 
 binData >>= 4; 
 binData &= 0x0F; 
 
 if(binData < 10) 
  return ('0' + binData); 
 else 
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  return ('A' + binData - 10); 
} 
 
// Low 4 bits to hex character 
char lowHex(char binData){ 
 
 binData &= 0x0F; 
 
 if(binData < 10) 
  return ('0' + binData); 
 else 
  return ('A' + binData - 10); 
} 
 
 
void main(){ 
 
 // Set up internal Oscillator 
 OPTION_REG = 0x87; // Disable PORTB Pull-ups, TRM0 256 Prescalar 
// OSCCON = 0x78;  // 8MHz Internal Clock, internal RC for system clock 
 OSCCON = 0x28;  // 250kHz, internal RC for system clock 
 
 TRISB.0 = 0;  // Chip select of serial EEPROM 
 TRISB.2 = 1;  // Ground RB2 through 100kOhm resistor 
 
 // General AUSART Settings 
 BRGH = 1;   // High baud rate setting 
 CREN = 1;   // Enable Port, enable continuous receive 
// SPBRG = 51;   // 9.615 Kbaud for 8MHz Clock, BRGH = 1 
// SPBRG = 25;   // 19.231 Kbaud for 8MHz Clock, BRGH = 1 
// SPBRG = 16;   // 29.412 Kbaud for 8MHz Clock, BRGH = 1 
 SPBRG = 12;   // 38.462 Kbaud for 8MHz Clock, BRGH = 1 
// SPBRG = 8;   // 55.556 Kbaud for 8MHz Clock, BRGH = 1 
 
 // Set up Timer1 
 T1CON = 0x0D;  // No Prescaler, enable Timer1, internal clock 
 
 // SSP Settings 
 CKE = 1;  // Clocking mode compatible with the serial EEPROM 
 SSPCON = 0x00;  // Data latched on rising edge, 
    // SPI Master mode, clock = OSC/4 
 TRISB.0 = 0;  // Output for Chip select 
 
 // Set up A/D 
 TRISA |= 0x03;  // RA0, RA1 are inputs 
 ANSEL = 0x03;  // Enable AN0, AN1 
 ADCON0 = 0x00;  // Use system clock/2, Turn A/D on, sel AN0 
 ADCON1 = 0x80;  // Right-justified output 
 ADON = 1;  // Prepare first A/D conversion 
 
 // Enable Peripheral Interrupts (like serial int), Global Interrupt Enable 
 INTCON = 0xC0; 
 
 // Instantiate local variables 
 uns24 addrEEPROM; // Pointer to next byte in memory 
 char readBuf = 0; // Read buffer 
 char deadStream = 0; // Counter to detect end of EEPROM 
  
 // Initialize global variables 
 write_ready = 0; // Do not write yet 
 insideStepFlag = 0; // Not yet inside of a step 
 serialIn = '\0'; // No serial data to interpret 
 sample_mode_flag = 1; 
 
 // First int in 250ms 
 TMR1L = 0xF7; 
 TMR1H = 0xC2; 
 
 TMR1IE = 1;  // Enable Timer1 overflow interrupt 
 ADIE = 1;  // Enable ADC Conversion Completion Interrupt 
 PEIE = 1;  // Enable peripheral interrupts 
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 GIE = 1;  // Global interrupt enable 
 
 // Drive chip select high 
 end_InstSSP 
 
 // Main program loop 
 while(1){ 
 
  // Low-frequency sample mode 
  if(sample_mode_flag){ 
 
   // Check to see if serial module is connected 
   if(PORTB.2){ 
 
    sample_mode_flag = 0; 
    // Disable Timer1 and Interrupts 
    TMR1IE = 0; 
    TMR1IF = 0; 
    T1OSCEN = 0; 
    // Disable ADC 
    ADIE = 0; 
    GO = 0; 
    ADON = 0; 
    // Clear sample mode flags 
    insideStepFlag = 0; 
    write_ready = 0; 
 
    // Wait for one second (250kHz clock) 
    TMR1L = 0xDC; 
    TMR1H = 0x0B; 
    TMR1IF = 0; 
    while(!TMR1IF); 
 
    // 8MHz Internal Clock, internal RC for system clock 
    OSCCON = 0x78; 
    // Wait for stable frequency 
    while(!OSCCON.2); 
 
    enableAUS(); 
   } 
 
   // Write step data to EEPROM 
   if(write_ready){ 
 
    enableSSP(); 
 
    // Write enable instruction--obligatory 
    begin_InstSSP 
    sendByteSSP(WREN); 
    end_InstSSP 
 
    // 64us Delay in between instructions 
    nop(); 
    nop(); 
    nop(); 
    nop(); 
 
    // Page program instruction 
    begin_InstSSP 
    sendByteSSP(PP); 
    // Address bytes (2 or 3) 
    // Disable next line for ATMEL, only 16-bit addresses! 
    sendByteSSP(addrEEPROM.high8); 
    sendByteSSP(addrEEPROM.mid8); 
    sendByteSSP(addrEEPROM.low8); 
    // Write timestamp to EEPROM first (3 bytes) 
    sendByteSSP(wr_stepStartTime.high8); 
    sendByteSSP(wr_stepStartTime.mid8); 
    sendByteSSP(wr_stepStartTime.low8); 
    // Write step length to EEPROM (2 bytes) 
    sendByteSSP(wr_stepLength.high8); 
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    sendByteSSP(wr_stepLength.low8); 
    // Write force summation to EEPROM (3 bytes) 
    sendByteSSP(wr_forceAccum.high8); 
    sendByteSSP(wr_forceAccum.mid8); 
    sendByteSSP(wr_forceAccum.low8); 
    // Write max force to EEPROM last (2 bytes) 
    sendByteSSP(wr_forceMax.high8); 
    sendByteSSP(wr_forceMax.low8); 
    end_InstSSP 
 
    disableSSP(); 
 
    addrEEPROM += 10; // Move forward 10 bytes in EEPROM 
 
    PORTB.2 = 0; // Low so that serial signal can be recognized 
    TRISB.2 = 1; // Return RB2 to input for sampling 
      // for serial module connection 
 
    write_ready = 0; // Clear write flag 
   } 
 
  } 
 
  // Serial Communication mode 
  else { 
 
   // No serial input -> do nothing 
   if(serialIn == '\0') 
    continue; 
 
   // Ctrl + C: Calibration mode 
   if(serialIn == 3){ 
 
    serialIn = '\0'; 
 
    ADON = 1; 
    ADIE = 1; 
 
    while(!serialIn){ 
     // ADC TEST PROCEDURE 
     GO = 1; 
     while(GO); 
  
     masterTimer++; 
     write_ready = 0; 
  
     // Continuously displays the following quantities: 
     // Current sample relative to calibration 
     serialOut(hiHex(relSample.high8)); 
     serialOut(lowHex(relSample.high8)); 
     serialOut(hiHex(relSample.low8)); 
     serialOut(lowHex(relSample.low8)); 
       
     serialOut(' '); 
   
     // Calibration data (should be near 0x0200) 
     serialOut(hiHex(calData.high8)); 
     serialOut(lowHex(calData.high8)); 
     serialOut(hiHex(calData.low8)); 
     serialOut(lowHex(calData.low8)); 
   
     serialOut(' '); 
   
     // Maximum force for current/last step 
     serialOut(hiHex(forceMax.high8)); 
     serialOut(lowHex(forceMax.high8)); 
     serialOut(hiHex(forceMax.low8)); 
     serialOut(lowHex(forceMax.low8)); 
   
     serialOut(' '); 
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     // Accumulator value for last step 
     serialOut(hiHex(forceAccum.high8)); 
     serialOut(lowHex(forceAccum.high8)); 
     serialOut(hiHex(forceAccum.low8)); 
     serialOut(lowHex(forceAccum.low8)); 
   
     serialOut(' '); 
   
     //The letter S will appear if inside a step 
     if(insideStepFlag) 
      serialOut('S'); 
   
     serialOut(0x0D); 
     serialOut(0x0A); 
  
     // END ADC TEST PROCEDURE 
  
    } 
    serialIn = '\0'; 
   } 
 
   // Ctrl + S: sample mode 
   if(serialIn == 19){ 
 
    serialOut(0x0D); 
    serialOut(0x0A); 
    serialOut('R'); 
    serialOut('e'); 
    serialOut('m'); 
    serialOut('o'); 
    serialOut('v'); 
    serialOut('e'); 
    serialOut(' '); 
    serialOut('C'); 
    serialOut('a'); 
    serialOut('b'); 
    serialOut('l'); 
    serialOut('e'); 
    serialOut('.'); 
    serialOut(0x0D); 
    serialOut(0x0A); 
 
    disableAUS(); 
 
    // Turn RB2 into an input 
    PORTB.2 = 0; 
    TRISB.2 = 1; 
 
    // 250kHz, internal RC for system clock 
    OSCCON = 0x28; 
 
    // Enable Timer1 
    T1OSCEN = 1; 
 
    // Wait for user to remove Serial Module 
    // for one second (250kHz clock) 
    while(PORTB.2); 
    TMR1L = 0xDC; 
    TMR1H = 0x0B; 
    TMR1IF = 0; 
    while(!TMR1IF); 
 
    // Next int in 5ms (312 cycles for 250 kHz) 
    TMR1L = 0xC8; 
    TMR1H = 0xFE; 
 
    // Enable Timer1 Overflow interrupt 
    TMR1IF = 0; 
    TMR1IE = 1; 
 
    // Enable ADC 
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    ADON = 1; // ADC on 
    ADIE = 1; // Enable ADC Conversion Completion interrupt 
 
    sample_mode_flag = 1; 
 
    serialIn = '\0'; 
   } 
 
   // Ctrl + E? Erase entire EEPROM (Spansion only) 
   else if(serialIn == 5){ 
     
    // Ask for confirmation 
    serialOut('S'); 
    serialOut('u'); 
    serialOut('r'); 
    serialOut('e'); 
    serialOut('?'); 
 
    while( serialIn != 'y' && 
     serialIn != 'Y' && 
     serialIn != 'n' && 
     serialIn != 'N' ) ; 
 
    if( serialIn == 'n' || 
     serialIn == 'N' ) { 
     serialOut(' '); 
     serialOut('C'); 
     serialOut('a'); 
     serialOut('n'); 
     serialOut('c'); 
     serialOut('e'); 
     serialOut('l'); 
     serialOut('e'); 
     serialOut('d'); 
     serialOut('.'); 
     serialOut(0x0D); 
     serialOut(0x0A); 
     serialIn = '\0'; 
     continue; } 
 
    GIE = 0; // Disable all interrupts 
 
    disableAUS(); 
    enableSSP(); 
 
    // Write enable instruction--obligatory 
    begin_InstSSP 
    sendByteSSP(WREN); 
    end_InstSSP 
 
    // 2us Delay in between instructions 
    nop(); 
    nop(); 
    nop(); 
    nop(); 
  
    // Write status register, to write-enable all sectors 
    begin_InstSSP 
    sendByteSSP(WRSR); 
    sendByteSSP(0x00); // Free all sectors of flash 
    end_InstSSP 
  
    // 2us Delay in between instructions 
    nop(); 
    nop(); 
    nop(); 
    nop(); 
  
    // Read status register 
    begin_InstSSP 
    sendByteSSP(RDSR); 
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    // Wait for status register to be written to 
    while(receiveByteSSP() & 0x01); 
    end_InstSSP 
  
    // 2us Delay in between instructions 
    nop(); 
    nop(); 
    nop(); 
    nop(); 
  
    // Write enable instruction--obligatory 
    begin_InstSSP 
    sendByteSSP(WREN); 
    end_InstSSP 
  
    // 2us Delay in between instructions 
    nop(); 
    nop(); 
    nop(); 
    nop(); 
 
    // Bulk Erase instruction 
    begin_InstSSP 
    sendByteSSP(BE); 
    sendByteSSP(0x00); // 24-bit fill value (not important) 
    sendByteSSP(0x00); 
    sendByteSSP(0x00); 
    end_InstSSP 
    
    T1OSCEN = 1; // Enable Timer1 
    readBuf = 0x01; 
    while((readBuf & 0x01)){ 
     // Wait for 33ms (8MHz clock) 
     TMR0IF = 0; 
     TMR1L = 0x00; 
     TMR1H = 0x00; 
     while(!TMR1IF); 
 
     // Read status register of EEPROM 
     begin_InstSSP 
     sendByteSSP(RDSR); 
     readBuf = receiveByteSSP(); 
     end_InstSSP 
 
     // Display periods while waiting..... 
     disableSSP(); 
     enableAUS(); 
     serialOut('.'); 
     disableAUS(); 
     enableSSP(); 
    } 
 
    T1OSCEN = 0; // Disable Timer1 and Interrupts 
 
    // Confirm memory deletion to user 
    disableSSP(); 
    enableAUS(); 
    serialOut('['); 
    serialOut('O'); 
    serialOut('K'); 
    serialOut(']'); 
    serialOut(0x0D); 
    serialOut(0x0A); 
 
    serialIn = '\0'; 
    addrEEPROM = 0; // Reset EEPROM pointer 
    masterTimer = 0; // Reset timestamp 
 
    GIE = 1; 
   } 
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   // Ctrl + R? Dump raw contents of EEPROM 
   else if(serialIn == 18){ 
    GIE = 0;  // Disable all interrupts 
    addrEEPROM = 0; 
    deadStream = 0; 
 
    disableAUS(); 
    enableSSP(); 
    // Begin reading at address 0 
    begin_InstSSP 
    sendByteSSP(READ); 
    sendByteSSP(0x00); 
    sendByteSSP(0x00); 
    sendByteSSP(0x00); 
    // Read each byte and write to terminal until 
    // we receive 10 blank bytes (a blank step) 
    do { 
     readBuf = receiveByteSSP(); 
     disableSSP(); 
     enableAUS(); 
     serialOut(readBuf); 
     disableAUS(); 
     enableSSP(); 
     addrEEPROM++; 
     if(readBuf == 0xFF) 
      deadStream++; 
     else 
      deadStream = 0; 
    } while(deadStream < 10); 
    disableSSP(); 
    end_InstSSP 
    enableAUS(); 
 
    // Go back to first blank byte 
    addrEEPROM -= deadStream; 
    // Clear pseudo-flag, wait for next keypress 
    serialIn = '\0'; 
    GIE = 1; // Enable all interrupts 
   } 
 
   // Ctrl + X? Formatted Hex Dump (useful for Terminals) 
   else if(serialIn == 24){ 
    GIE = 0;  // Disable all interrupts 
    addrEEPROM = 0; 
    deadStream = 0; 
 
    disableAUS(); 
    enableSSP(); 
    // Begin reading at address 0 
    begin_InstSSP 
    sendByteSSP(READ); 
    sendByteSSP(0x00); 
    sendByteSSP(0x00); 
    sendByteSSP(0x00); 
    // Read each byte and write to terminal until 
    // we receive 10 blank bytes (a blank step) 
    do { 
 
     deadStream = 0; 
 
     // Read timestamp from EEPROM (3 bytes) 
     wr_stepStartTime.high8 = receiveByteSSP(); 
     wr_stepStartTime.mid8 = receiveByteSSP(); 
     wr_stepStartTime.low8 = receiveByteSSP(); 
     // Read step length from EEPROM (2 bytes) 
     wr_stepLength.high8 = receiveByteSSP(); 
     wr_stepLength.low8 = receiveByteSSP(); 
     // Read force summation from EEPROM (3 bytes) 
     wr_forceAccum.high8 = receiveByteSSP(); 
     wr_forceAccum.mid8 = receiveByteSSP(); 
     wr_forceAccum.low8 = receiveByteSSP(); 
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     // Read max force from EEPROM last (2 bytes) 
     wr_forceMax.high8 = receiveByteSSP(); 
     wr_forceMax.low8 = receiveByteSSP(); 
 
     disableSSP(); 
     enableAUS(); 
 
     // Write timestamp to terminal (6 hex chars) 
     serialOut(hiHex(wr_stepStartTime.high8)); 
     serialOut(lowHex(wr_stepStartTime.high8)); 
     serialOut(hiHex(wr_stepStartTime.mid8)); 
     serialOut(lowHex(wr_stepStartTime.mid8)); 
     serialOut(hiHex(wr_stepStartTime.low8)); 
     serialOut(lowHex(wr_stepStartTime.low8)); 
     serialOut(' '); // Insert a space 
     // Write step length to terminal (4 hex chars) 
     serialOut(hiHex(wr_stepLength.high8)); 
     serialOut(lowHex(wr_stepLength.high8)); 
     serialOut(hiHex(wr_stepLength.low8)); 
     serialOut(lowHex(wr_stepLength.low8)); 
     serialOut(' '); // Insert a space 
     // Write force summation to terminal (6 hex chars) 
     serialOut(hiHex(wr_forceAccum.high8)); 
     serialOut(lowHex(wr_forceAccum.high8)); 
     serialOut(hiHex(wr_forceAccum.mid8)); 
     serialOut(lowHex(wr_forceAccum.mid8)); 
     serialOut(hiHex(wr_forceAccum.low8)); 
     serialOut(lowHex(wr_forceAccum.low8)); 
     serialOut(' '); // Insert a space 
     // Write max force to terminal (4 hex chars) 
     serialOut(hiHex(wr_forceMax.high8)); 
     serialOut(lowHex(wr_forceMax.high8)); 
     serialOut(hiHex(wr_forceMax.low8)); 
     serialOut(lowHex(wr_forceMax.low8)); 
     // Insert Newline at end of each step 
     serialOut(0x0D); 
     serialOut(0x0A); 
 
     disableAUS(); 
     enableSSP(); 
     addrEEPROM+=10; 
      
     // Check to see if we have reached the end of data 
     if(wr_stepStartTime == -1) 
      deadStream++; 
     if(wr_stepLength == -1) 
      deadStream++; 
     if(wr_forceAccum == -1) 
      deadStream++; 
     if(wr_forceMax == -1) 
      deadStream++; 
 
    } while(deadStream < 4); 
 
    disableSSP(); 
    end_InstSSP 
    enableAUS(); 
 
    // Go back to first blank byte 
    addrEEPROM -= 10; 
    // Clear pseudo-flag, wait for next keypress 
    serialIn = '\0'; 
    GIE = 1; // Enable all interrupts 
   } 
 
   // Echo character to terminal 
   else { 
    serialOut(serialIn); 
    // Enter? Proper newline 
    if(serialIn==0x0D) 
     serialOut(0x0A); 
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     // Backspace? Make last char disappear 
    else if(serialIn==0x08){ 
     serialOut(' '); 
     serialOut(0x08); 
    } 
    serialIn = '\0'; 
   } 
 
  } 
 
 
 } 
} 
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