Glucose Sensor Utilizing Silicon Planar Technology

Charlotte Martinez
SUNFEST 2000
Advisors: Dr. Santiago, P. Espinoza
Purpose of Project

• Fabricate a glucose sensor for use by diabetics.
 – Be able to achieve continuous measurements of glucose.
• Evaluate non-invasive methods of measuring glucose levels.
What is a biosensor?

- Analytical device incorporating a biological material.
- Produces digital electronic signal related to the concentration of a chemical.
- Self-contained integrated device.

We will use an Enzyme biosensor
Chosen Method

- Silicon dioxide layer
- Platinum bonding pads (contacts)
- Silicon layer serves as a mask.
Fabrication

• Deposition of Platinum
 – Sputtering
 – Electron beam evaporation.

• Developing
25-Angstrom Platinum layer

- Top view
- 3-D view of same step at 320 degree rotation
Results

- Not many sensors adhered to the silicon wafer surface.
- Sensitive Sensors
- Three wafers were made at the same time.
Results

- All sensors adhered to the first wafer.
- No sensors adhered to the second wafer.
- Less than half of the sensors adhered to the third wafer
Sensor Resistance at Various Glucose Concentrations (MOhm)
Non-invasive Glucose Monitoring

- Non-invasive glucose sensor
- Feedbacks sensor signal to insulin pump.
- No intervention required from the patient.
Raman Spectroscopy

- Vibrates molecules and measures scattered light produced.
- Each material has a different wavelength and spectrum.
- Material can be determined by spectrum.

Raman Spectrum of a 50% glucose solution.
Other Methods

- Non-invasive glucose monitoring techniques can be classified as subcutaneous, dermal, epidermal and combined dermal glucose measurements
- Infrared Spectroscopy
- Photo acoustic Spectroscopy
- Mid-Infrared Spectroscopy