A 3-D Heart Model for Arrhythmia Simulation and Visualization

Peter Malamas Johns Hopkins University

Advisors: Dr. Rahul Mangharam, Zhihao Jiang

> Department of ESE August 4, 2011

Motivation: Cardiac Arrhythmias

Motivation: Arrhythmia Therapy

Problem

- Anti-arrhythmic drugs used by 1.5 million Americans do not offer health benefits
- Ablation procedures only yield success rates of 40-85%, thus requiring repeated procedures in half the cases

Goal

 Develop a 3-D Heart Model for Arrhythmia Simulation and Visualization

Heart Conduction System

- The electrical conduction system of the heart is important natural real-time system
- The coordinated contraction of the heart is governed by the electrical conduction system
- We model the heart by extracting their timing related properties

Common Cause of Cardiac Arrhythmia Circuit

Circular pathways in heart's conduction system is a common cause of arrhythmias

Ablation: Restoring Heart Rhythm

Ablation burns cells to eliminate rhythm abnormalities in patients

Catheter Ablation Procedure

- Spatial
 - Xray
 - Ultra-sound
- Temporal
 - Electrogram

Electrogram

Xray

SUNFEST 2011

Echocardiography

Electrogram

Xray Echocardiography

3-D Heart Model for Arrhythmia Simulation and Visualization

3D Heart Geometry

Accurate Anatomical Spatial Information

- MRI of the heart from the 3 different axes were processed
- Number of vertices on 3D surface reduced from 7,807 to 437 nodes (93% reduction)

MRI heart scans: Horizontal View

Conclusion

- Current 3D model is first step towards building automated guidance tool for surgeons conducting EP studies
- Such a tool will make surgeon's work faster, more precise, and reduce the intellectual demand on the surgeon

Future Work

• Atrial Flutter Case Study

• Develop patient-specific model, connect to real patient data

• 3D model to operate in real-time and guidance tool for physician

Acknowledgements

- Dr. Rahul Mangharam
- Zhihao Jiang
- Dr. Sanjay Dixit
- Dr. Jan Van der Spiegel
- SUNFEST staff
- National Science Foundation

