DESIGNING A STRESS/STRAIN APPARATUS FOR ORGANIC FIELD-EFFECT TRANSISTORS

Adam W. S. Lowery¹
Graduate Supervisor: Yuming Lai²
Project Supervisor: Dr. Cherie Kagan²
Cornell University¹
Department of Electrical & Systems Engineering, University of Pennsylvania²
So what’s happening in the Kagan Lab?

- What are there applications?
- What advantages do they bring?
- How is my project involved?

Field-Effect Transistors (FETs)
How to bend a FET?

- Use an instron to induce the bend
- Use a mandrel to induce the bend
- Bend the device across something with a fixed diameter (i.e. cylinder)
Four-Point Bending

- Four points of contact with the substrate
- Bending moment varies with position
- Constant bending moment within “b”
- Constant radius of curvature
Four-Point Bending as a quantitative analysis

Bending Moment

Regions a
\[EI \frac{d^2y}{dx^2} = M(x) = \frac{F}{2} x \]

Center
\[EI \frac{d^2y}{dx^2} = M(x) = \frac{F}{2} a \]

Deflection

Regions a
\[y(x) = \frac{1}{EI} \left[Fx^3 \frac{1}{12} + Fa \left(a \frac{a}{4} - \frac{(L/2)}{2} \right) x \right] \]

Center
\[y(x) = \frac{1}{EI} \left[Fa \frac{a^2}{4x^2} + Fa^3 \frac{1}{12} - Fa(L/2) \frac{1}{2} \right] x \]

E = Young’s Modulus
I = Moment of Inertia
Four-Point Bending as a quantitative analysis cont.

Center/Region b

- **Strain**
 \[\varepsilon = \frac{\sigma}{E} \]

- **Radius of Curvature/Bending Moment Relation**
 \[\frac{1}{\rho} = \frac{M(x)}{EI} \]

- **Stress**
 \[\sigma = \frac{M(x)c}{I} \]
So where are we now?

Designing Custom Parts
Applying the downward force on the apparatus using a precision mechanical stage setup
We hope to have a four-point bend apparatus that will resemble the conceptualized designs above.
Future Work

- Testing the effectiveness of the apparatus
- Bending the transistors and observing any changes in their properties
- Comparing the tested results with the quantitative solutions
- Reconfiguring the transistors to perform better if needed
Acknowledgments

I would like to thank those person’s responsible for helping me with this project. Without any of them the work we accomplished would not have been possible.

Dr. Cherie Kagan: My project supervisor, who gave me the opportunity to work in her lab this summer.

Yuming Lai: My graduate supervisor, who was very supportive in helping me track down resources and materials that I would need for this project.

Dr. Dan Gianola: A professor in the material science department, who shared his insight in flexural test and helped me conceptualize a design.

Dr. John Bassani: A professor in the school of mechanical engineering, who introduced me to the concept of four-point bending.

And last but not least, I would like to thank NSF, Dr. Jan Van der Spiegel, and the rest of the SUNFEST staff and faculty for allowing the opportunity to participate in this summers program at the University of Pennsylvania.