Mechanotransduction in Stem Cells for Cartilage Tissue Engineering

Ryan Li
Case Western Reserve University

Advisor: Dr. Robert Mauck
SUNFEST Final Presentation
August 10, 2007
Articular Cartilage Overview

Biochemical Composition:
- Extracellular matrix
 - Collagen Type II (10%-30% wet wt)
 - Sulfated proteoglycans (3%-10% wet weight)
- Chondrocytes

Function:
- Compressive Properties
- Tensile Properties
- Fluid Flow
Cartilage Degeneration

Proteoglycan Loss
Collagen Damage

↓ Modulus
↑ Hydraulic Permeability

↑ Matrix Deformation
↓ Fluid Pressurization

↓ Load-Bearing Capacity
Tissue Engineering Paradigm

“a field…that seeks to develop functional cell, tissue, and organ substitutes to repair, replace or enhance biological function...” [NIH]

Cells
- Chondrocytes
- Mesenchymal Stem Cells (MSCs)

Scaffolds
- Polymer foams
- Polymer meshes
- Hydrogels

Extracellular Environment
- Mechanical Signaling
- Chemical growth factors
Mesenchymal Stem Cells

THE MESENGENIC PROCESS

Proliferation
- Mesenchymal Stem Cell (MSC)
 - MSC Proliferation

Commitment
- Osteogenesis
 - Transitory Osteoblast
 - Transitory Osteoblast
 - Myoblast Fusion
 - Myotube
 - Unique Micro-niche
 - T/L Fibroblast
 - TENDON/LIGAMENT
 - Adipocytes, Dermal and Other Cells

Lineage Progression
- Chondrogenesis
 - Transitory Chondrocyte
 - Chondrocyte
 - Hypertrophic Chondrocyte
 - CARTILAGE

Differentiation
- Osteoblast
 - Osteocyte
 - BONE

Maturation
- Marrow Stroma
 - Tendogenes/Ligamentogenesis
 - Other

Marrow/Poistosteum
- Mesenchymal Tissue
Scaffold Design

Agarose

- Thermo-crosslinkable hydrogel made of polysaccharides (D- and L- galactose)
- Cellular encapsulation
- Mechanical Properties
 - Not biodegradable
 - Immunogenic

Hyaluronic Acid (HA)

- Photo-crosslinkable polysaccharide hydrogel
- Natural extracellular matrix component – biodegradable
- Successful cell encapsulation
Physiologic Loading of Cartilage

Mechanical conditioning has been shown to improve chondrocyte mechanical properties

- Compressive Forces
- Sliding Forces
Mechanotransduction

Extracellular Signal

MAP Kinase activation / Signal transduction

Gene Expression Changes

Matrix Composition Biochemical Change

Mechanical Properties (Equilibrium Modulus, Dynamic Modulus, etc.)
Chondrogenesis in 3-D Culture

- MSC-laden constructs increase in mechanical properties with time
- Young's Modulus of MSC-laden constructs << that of chondrocyte-laden constructs

Mauck+ 2006
Target Gene Expression Results

- **Xylosyltransferase-1 (XT-1)**
 - CHOND: d14 > d28 > d42 > d56

- **GalNAc4,6S-disulfotransferase (GalNAc)**
 - CHOND: d14 > d28 > d42 > d56

- **Chondroitin-4-sulfotransferase-1 (C4st-1)**
 - CHOND: d14 > d28 > d42 > d56

- **Chondroitin-4-sulfotransferase-2 (C4st-2)**
 - CHOND: d14 > d28 > d42 > d56
Hypothesis and Rationale:

Hypothesis: Compressive loading of MSC-seeded scaffolds leads to upregulation of matrix biosynthetic genes in the short term and increases in mechanical properties in the long term.

Rationale:
- Mechanical signals are relevant developmentally
- Changes in gene expression and chondrogenic expression in chondrocytes after mechanical signaling
- Target genes shown to be mechanically sensitive in chondrocytes
3D Hydrogel Culture

2% Agarose (@45°C) or 2% Hyaluronic Acid:
20 x 10⁶ cells/ml

Disks:
2.25 X Ø 5.0 mm

Bovine MSC Harvest and Expansion

Free Swelling Culture

Chondrogenic Medium
(CM-/CM+) (+ TGF-β3)

Penn
Dynamic Compression Bioreactor

Dynamic Compression Bioreactor
(10% deformation, sinusoidal waveform)

Loading Plate

 Constructs in Petri Dish

Bioreactor Displacement

1.0 Hz

3.0 Hz

0.33 Hz
Methods

• Mechanical Properties – Equilibrium Modulus
 • Creep testing
 • Stress relaxation

• Biochemistry:
 • GAG content
 • Collagen Content
 • DNA content

• Gene Expression –
 • TRIZOL extraction
 • cDNA synthesis
 • RT-PCR

• Histology
RX2: Encapsulation of MSCs in Hyaluronic Acid Scaffold Promotes Cell Growth and Chondrogenesis

MTT Assay
3-(4, 5-Dimethylthiazol-2-yl)-2, 5 – diphenyltetrazolium bromide) –

GAG Quantification on day 21
RX3, RX5: Short Term Gene Expression in MSC-laden HA Constructs

Dynamic Loading @ 1 Hz (CM+/CM-)

3 hours

3 hours

Free Swelling Culture (CM+/CM-)

24 hours

6 hours

TRIZOL extraction, cDNA synthesis, RT-PCR on all samples
RX3, RX5: Matrix Biosynthesis Genes are Upregulated in Response to Short-Term Loading

Mechanical upregulation of GalNAc is enhanced in absence of TGF-b3

C4st-1 upregulation is enhanced in presence of TGF-b3
RX3, RX5: C4st-2, XT-1 are Upregulated in Response to Short-Term Loading

Question:
Does increased gene expression translate to long-term improvements in mechanical properties?
RX1: Long Term Mechanical Loading

Agarose and HA Hydrogels

Dynamic Loading (3 hrs/day)

0 days

Free Swelling Culture (CM+)

21 days

Free Swelling Culture (CM+/CM-)

3 Hz

1 Hz

0.33 Hz

42 days
Dynamic Loading Causes Decrease in Equilibrium Moduli in Agarose and HA Constructs

Equilibrium Moduli - Agarose

- CM- (light blue bars)
- CM+ (dark black bars)

<table>
<thead>
<tr>
<th>Time</th>
<th>Moduli (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>10 ± 2</td>
</tr>
<tr>
<td>d21</td>
<td>20 ± 3</td>
</tr>
<tr>
<td>FS</td>
<td>50 ± 5</td>
</tr>
<tr>
<td>3 Hz</td>
<td>40 ± 4</td>
</tr>
<tr>
<td>1 Hz</td>
<td>30 ± 3</td>
</tr>
<tr>
<td>0.33 Hz</td>
<td>25 ± 2</td>
</tr>
</tbody>
</table>

Equilibrium Moduli - Hyaluronic Acid

- CM- (light blue bars)
- CM+ (dark black bars)

<table>
<thead>
<tr>
<th>Time</th>
<th>Moduli (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>d21</td>
<td>15 ± 2</td>
</tr>
<tr>
<td>FS</td>
<td>45 ± 5</td>
</tr>
<tr>
<td>3 Hz</td>
<td>35 ± 3</td>
</tr>
<tr>
<td>1 Hz</td>
<td>25 ± 2</td>
</tr>
<tr>
<td>0.33 Hz</td>
<td>20 ± 1</td>
</tr>
</tbody>
</table>
Matrix Biosynthesis Genes are Upregulated in Response to Long Term Loading

Agarose Long Term

- **C4st-1**

 - CM-
 - CM+

HA Long Term

- **C4st-2**

 - CM-
 - CM+
Matrix Biosynthesis Genes are Upregulated in Response to Long Term Loading

Agarose Long Term

HA Long Term

XT-1

GalNAC
Discussion

- Hyaluronic Acid is a viable alternative scaffold promoting cell proliferation and chondrogenesis
- Matrix biosynthetic genes C4st-1, 2, XT-1, and GalNAc are mechanically sensitive in MSCs
- Dynamic loading causes upregulation of biosynthetic genes
- Increases in gene expression levels do not translate to mechanical and biochemical improvements in the long term
Dynamic Loading Decreases GAG Biosynthesis in Agarose Constructs

![Graph showing Agarose GAG Content](image)
HA Hydrogels Show Negligible Changes in Biochemical Composition in Response to Dynamic Loading

- Hyaluronic Acid GAG Content

<table>
<thead>
<tr>
<th>Time</th>
<th>CM-</th>
<th>CM+</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.33 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>