Mechanotransduction in Stem Cells for Cartilage Tissue Engineering

Ryan Li
Case Western Reserve University

Advisor: Dr. Robert Mauck SUNFEST Final Presentation August 10, 2007

Articular Cartilage Overview

Biochemical Composition:

- Extracellular matrix
 - Collagen Type II (10%-30% wet wt)
 - Sulfated proteoglycans (3%-10% wet weight)
- Chondrocytes

Function:

- CompressiveProperties
- Tensile Properties
- Fluid Flow

Cartilage Degeneration

Proteoglycan Loss Collagen Damage

Modulus

Hydraulic Permeability

Matrix Deformation Fluid Pressurization

Load-Bearing Capacity

Tissue Engineering Paradigm

"a field...that seeks to develop functional cell, tissue, and organ substitutes to repair, replace or enhance biological function..." [NIH]

Cells

- Chondrocytes
- Mesenchymal Stem Cells (MSCs)

Scaffolds

- Polymer foams
- Polymer meshes
- Hydrogels

Extracellular Environment

- Mechanical Signaling
- Chemical growth factors

Mesenchymal Stem Cells

Scaffold Design

Hyaluronic Acid (HA)

- Photo-crosslinkable polysaccharide hydrogel
- Natural extracellular matrix component – biodegradable
- Successful cell encapsulation

Agarose

- •Thermo-crosslinkable hydrogel made of polysaccharides (D- and L- galactose)
- Cellular encapsulation
- Mechanical Properties
- Not biodegradable
- •Immunogenic

Physiologic Loading of Cartilage

- Compressive Forces
- Sliding Forces

Mechanical conditioning has been shown to improve chondrocyte mechanical properties

Mechanotransduction

Extracellular Signal

MAP Kinase activation / Signal transduction

Gene Expression Changes

Matrix Composition Biochemical Change

Mechanical Properties (Equilibrium Modulus, Dynamic Modulus, etc.)

Chondrogenesis in 3-D Culture

- •MSC-laden constructs increase in mechanical properties with time
- •Young's Modulus of MSC-laden constructs << that of chondrocyteladen constructs

Target Gene Expression Results

Hypothesis and Rationale:

Hypothesis: Compressive loading of MSCseeded scaffolds leads to upregulation of matrix biosynthetic genes in the short term and increases in mechanical properties in the long term.

Rationale:

- Mechanical signals are relevant developmentally
- •Changes in gene expression and chondrogenic expression in chondrocytes after mechanical signaling
- •Target genes shown to be mechanically sensitive in chondrocytes

3D Hydrogel Culture

2% Agarose (@45°C) or 2% Hyaluronic Acid: 20 x 10⁶ cells/ml

Free Swelling Culture

Chondrogenic Medium (CM-/CM+) (+ TGF-β3)

Bovine MSC Harvest and Expansion

Dynamic Compression Bioreactor

Dynamic Compression Bioreactor

(10% deformation, sinusoidal waveform)

Loading Plate

Constructs in Petri Dish

Bioreactor 1.0 Hz Displacement

(sec)

Methods

- •Mechanical Properties Equilibrium Modulus
 - Creep testing
 - Stress relaxation
- •Biochemistry:
 - GAG content
 - Collagen Content
 - DNA content
- •Gene Expression
 - TRIZOL extraction
 - •cDNA synthesis
 - •RT-PCR
- Histology

RX2: Encapsulation of MSCs in Hyaluronic Acid Scaffold Promotes Cell Growth and Chondrogenesis

MTT Assay

3-(4, 5-Dimethylthiazol-2-yl)-2, 5 – diphenyltetrazolium bromide) –

GAG Quantification on day 21

RX3, RX5: Short Term Gene Expression in MSC-laden HA Constructs

RX3, RX5: Matrix Biosynthesis Genes are Upregulated in Response to Short-Term Loading

Mechanical upregulation of GalNAc is enhanced in absence of TGF-b3

C4st-1
upregulation is
enhanced in
presence of TGFb3

RX3, RX5: C4st-2, XT-1 are Upregulated in Response to Short-Term Loading

Question:

Does increased gene expression translate to long-term improvements in mechanical properties?

RX1: Long Term Mechanical Loading

Dynamic Loading Causes Decrease in Equilibrium Moduli in Agarose and HA Constructs

Matrix Biosynthesis Genes are Upregulated in Response to Long Term Loading

Matrix Biosynthesis Genes are Upregulated in Response to Long Term Loading

Discussion

- Hyaluronic Acid is a viable alternative scaffold promoting cell proliferation and chondrogenesis
- Matrix biosynthetic genes C4st-1, 2, XT-1, and GalNAc are mechanically sensitive in MSCs
- Dynamic loading causes upregulation of biosynthetic genes
- Increases in gene expression levels do not translate to mechanical and biochemical improvements in the long term

Thank You

Dr. Robert Mauck
Alice Huang
Isaac Erickson
Dr. Meira Yeger-McKeever
Brendon Baker
Nandan Nerurkar
Burdick Lab
Ashwin Nathan
Ashley Stein

NSF SUNFEST

Dynamic Loading Decreases GAG Biosynthesis in Agarose Constructs

HA Hydrogels Show Negligible Changes in Biochemical Composition in Response to Dynamic Loading

