Optimizing Legged Locomotion Using Tunable Leg Stiffness

By
Kamruzzaman Rony
Stony Brook University, NY

Advisors:
Dr. Daniel E. Koditschek
Kevin Galloway
Outline

• Background
• Video of Edubot/RHex
• Why tunable/variable stiffness leg?
• Research Project Objective
• Slider leg or variable compliance leg video
• Problem & Solution
• IR communication Video
Spring Loaded Inverted Pendulum (SLIP)

Two-Legged: Human
Four-Legged: Dog
Six-Legged: Cockroach
Eight-Legged: Crab

SLIP

Cavagna et al., 1977
Why variable/tunable leg stiffness?

Animals can change their leg stiffness in real time to adapt to the changes in the environment during locomotion.

Robots need variable stiffness leg in order to minimize the performance gap of locomotion between them and animals.

Variable stiffness legs help to perform locomotion efficiently when:

- terrain or ground stiffness changes
- the gravity or their payload changes
- change in speed is needed

Incorporating adjustable leg stiffness in the design of running robots is important if they are to match the speed and agility of animals on varied terrain.
Edubot, a six-legged robot, is the smaller version of RHex. Its design is based on cockroach.
Research Project Objective

Designing the electrical control circuitry for the variable stiffness leg (shown above) to optimize locomotion.
Problem & Solution

Problem

Two Parts:

1. Implementing robot-to-leg ‘communication’ scheme

2. Controlling the slider position on the leg based on data transmitted from the body
IR Communication Demo
Acknowledgements

Professor Koditschek
Kevin Galloway
Professor Van der Spiegel
Bill Mather
Michael Park
Chris Baldassano

&

The whole SUNFEST crew
QUESTIONS?