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ABSTRACT

One of the fundamental problems in the field of robotics is path determination and
motion planning. The project described in this paper focuses on path determination in a
known environment. The goal is to enable a mobile robot to successfully navigate an
environment according to a specified temporal logic formula. On a high level, temporal
logic formulas can effectively provide the robot with directions on where and when to go.
As part of this project, a program will be developed to formulate a continuous path plan
that will fulfill the temporal logic formula supplied for the robot to follow.

In this project, the ActivMedia Pioneer 3-DX robot will be used. This robot model was
chosen because it is preconfigured for basic navigation. Preprogrammed with algorithms
for shortest path determination, obstacle avoidance, and localization, the Pioneer 3-DX is
also capable of new navigation techniques that can be programmed in C and C++. Maps
of known environments can be generated by the Pioneer 3-DX. A graphical user interface
program will utilize these maps in conjunction with user supplied directions as expressed
by a temporal logic formula to construct a path plan. The path determined by the program
can then be relayed back to the robot for implementation.



2

Table of Contents

1. INTRODUCTION p. 3

2. OVERVIEW OF CONTINUOUS PATH CREATION p. 3

3. ROBOT DESCRIPTION
3.1 Pioneer 3-DX p. 5
3.2 Robot Behavior p. 7

4. GRAPHICAL USER INTERFACE FOR ROBOT MAPS
4.1 Purpose p. 8
4.2 Development of the GUI p. 9

5. DISCUSSION AND CONCLUSIONS p. 13

6. RECOMMENDATIONS p. 14

7. ACKNOWLEDGEMENTS p. 14

8. REFERENCES p. 15

APPENDIX p. 16



3

1. INTRODUCTION

In the constantly evolving field of robotics, path determination is a topic that attracts
much interest because of its numerous potential applications. A robot which can plan its
own path when given destinations and certain guidelines can be used for patrol and
mobile surveillance or transport and delivery of items. Using robots for such applications
can not only offer convenience to users but can also save lives when employed in military
situations. Such beneficial uses validate the importance of research pertaining to path
determination.

The project that this paper is based upon focuses on determining a path that fulfills a
specified direction represented by a temporal logic formula. It stems from an earlier paper
[1] published by two graduate students -- Georgios Fainekos and Hadas Kress-Gazit --
and Professor George Pappas of the General Robots Automation Sensing Perception
(GRASP) Laboratory at the University of Pennsylvania. The paper presents the method
by which continuous path plans can be generated for a robot in a known environment.
The continuous path will be implemented by the robot and should satisfy temporal logic
input. The overall goal behind this study is to allow users to effectively direct a robot on a
high communication level that is close to natural human language in the form of temporal
logic [1].

The sections that follow this introduction will further explain the details of the project
and the progress made to date. Section 2 will discuss the background of the development
of a continuous navigation path. Section 3 will introduce the ActivMedia Pioneer 3-DX,
the specific robot that will be used in this project. This section will also present some key
navigation behaviors that the Pioneer 3-DX is capable of and discuss how new behaviors
can be programmed. Section 4 will cover the purpose and the development of the robot
map graphical user interface (GUI) program, which will be used to ultimately generate
paths for the robot. In section 5, discussions and conclusions of the overall project are
presented. Section 6 covers recommendations for future work and Section 7 is dedicated
to acknowledgements. All references can be found in Section 8.

2. OVERVIEW OF CONTINUOUS PATH CREATION

The following description of continuous path creation was originally presented and
discussed in the research paper [1] that served as a foundation for this project. In the
interest of brevity, the prior work on continuous path creation will be briefly summarized
here. Readers interested in further detail should consult the original source.

The process of creating a continuous path for implementation begins with navigation
directions. Directions are to be given in the form of temporal logic formulas. Temporal
logic formulas can delineate multiple destinations and specify when the destinations
should be reached. For example, an instance of a temporal logic formula can be used to
direct the robot to visit all rooms but not to visit a certain room until all other rooms have
been visited. Temporal logic formulas are close to human language, providing greater
accessibility to users who would therefore not need to be concerned with the lower
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implementation of the robot’s movements. A direction alone is not sufficient for path
generation. The robot must know its environment through a map of the environment that
pertains to the directions provided.

Figure 1: 2-D environment map of a floor in the Levine Building

Another necessary component for creating a path is a 2-D graphical map (as illustrated in
Figure 1) delineating, from a bird’s eye view, walls and obstructions of the environment
to be navigated. The next step in arriving at a continuous path is to develop a discrete
path through model checkers. To develop a discrete path, the 2-D graphical map needs to
be partitioned into discrete units. Although other partitioning methods could also be
considered, triangulation has been recommended because of its relative ease in
computation and readily available algorithms. The destinations then specified by the
temporal logic formula will each be composed of at least one triangle. A discrete path can
be created that visits the necessary triangles to fulfill the temporal logic formula. Upon
generation of a discrete path, a continuous path can be developed. The continuous path
must obviously still satisfy the original temporal logic formula. For further detail on the
process of continuous path creation, please refer to the original path planning paper [1].
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3. ROBOT DESCRIPTION

3.1 Pioneer 3-DX

The Pioneer 3-DX robot made by ActivMedia Robotics is an all purpose robot suitable
for research [2]. The robot is readily capable of basic navigation functions. One of the
most important features of the Pioneer 3-DX is its ability to localize itself fairly
accurately within a known environment. In Figure 2, the Pioneer 3-DX is observed from
its front. Localization is made possible by the eight sonar shown in the figure; two of the
sonar are hidden from view as they are mounted on the sides of the robot. The laser
rangefinder that sits on top of the robot also assists with localization. The laser
rangefinder has the advantage of greater range and accuracy than the sonar. However, the
sonar is necessary to detect low lying obstacles close to the ground.

Figure 2: Front View of Pioneer 3-DX

Sonar

Laser
Rangefinder
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Figure 3: Side View of Pioneer 3-DX

For the Pioneer 3-DX to localize itself, it would need to know its environment. To
acquaint the robot with an unfamiliar environment, a joystick can be plugged into a USB
port on the robot. With the laser rangefinder activated, the robot can be driven manually
with the joystick until the new environment has been fully covered. The robot has an on-
board computer (see Figure 3) which can store points scanned from the laser rangefinder
and create a map file similar to that shown in Figure 1. Sometimes, erroneous points can
be introduced during the mapping process. Because the environment is unlikely to be
static, movement by people or other mobile objects within range of the laser will be
picked up and plotted on the map. The laser also lacks the ability to successfully detect
transparent surfaces such as glass on windows as obstructions. See Figure 4 for the
original floor map of the Levine Building. Hazy or noisy areas exist where erroneous or
unintended data points are plotted. To correct these possible errors, the map file needs to
be edited.

Ethernet
Antennae

On-Board
Computer
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Figure 4: Robot generated map of floor in Levine Building before editing

The on-board computer of the Pioneer 3-DX is sufficient for implementing the programs
required for the robot’s navigation. However, due to resource restrictions, the map editing
process will be fairly slow on the on-board computer. To modify the map file more
efficiently, files on the Pioneer 3-DX can be sent to a base computer via wireless
Ethernet. Figure 3 shows the Ethernet antennae that can wirelessly transmit information
packets to another PC. Upon transferring the map, editing can be done on the base
computer and then the map can be sent back to the robot for storage and future use.
Besides editing out erroneous points, the base computer will also eventually be used to
implement the process by which the map is partitioned and a continuous path based on
temporal logic formulas supplied is created.

3.2 Robot Behaviors

The Pioneer 3-DX comes equipped with some useful high level navigational behaviors.
Two of the most important behaviors are obstacle avoidance and shortest path
determination. In obstacle avoidance, the robot takes readings from its laser rangefinder
and sonar to determine whether there are objects blocking its path. Upon detecting an
obstacle in its path it will stop to avoid collision. There are several behaviors that can
follow the stop action after obstacle detection. One consequent behavior that occurs after
detecting an obstruction instructs the robot to back off after stopping and turn towards a
different direction. The other important behavior with which the Pioneer 3-DX is
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preprogrammed is shortest path determination in a known environment. This behavior
requires a map file of the environment and a home position on the map from where it will
start. A destination is also specified on the map. With this map file, the robot has the
ability to determine a shortest path while avoiding walls specified by the map.

The robot behaviors that the Pioneer 3-DX can exhibit are developed with the
ActivMedia Robotics Interface Application (ARIA). ARIA is programmed in C++ and its
classes can be used to obtain readings from the robot’s sensors (sonar, laser, wheel
movements, etc.) [2].The robot’s basic movements -- as represented by direction -- and
speed can also be manipulated by ARIA. To develop new behaviors or modify existing
navigation behaviors, ARIA’s classes can be used in a C++ programming environment
such as Microsoft Visual Studio C++. Because the on-board computer has limited
resources, a programming environment such as Visual Studio would be operated at a base
computer. A behavior after compilation then can be relayed back to the robot for
implementation through wireless Ethernet.

Using SRI International’s Saphira is often an easier way of implementing behaviors.
Saphira is built utilizing ARIA and exists as a higher level programming environment for
robot behaviors. As a consequence of its higher level nature, programming in Saphira is
inherently simpler than programming in C++ with ARIA. Saphira includes its own
programming language, Colbert, which is based on the C programming language [3].
Colbert can be used to construct activities which provide navigational instructions to the
robot upon implementation. Activities can be used to provide direct movement
commands which, for instance can tell the robot to move forward 10 meters and turn 90
degrees. An activity can also be used to implement robot behaviors like obstacle
avoidance by producing movement commands that depend on sensor readings [3].

Saphira also provides a simulator from which activities can be interactively tested and
modified. The robot used in the simulation can be an actual Pioneer 3-DX or a virtual
robot that emulates actual physical robot limits. The simulator allows multiple activities
to be implemented. Of course, some activities may contradict others at times in which
one activity is directing the robot forward and another is simultaneously directing it to
move in reverse. To resolve such movement conflicts, Saphira uses a system by which
each activity is given a priority. Direct motion directions are usually given precedence
over directions derived from sensor dependent behaviors [3]. For implementation of
activities that involve a known environment, map files can be imported into the Saphira
simulator.

4. GRAPHICAL USER INTERFACE FOR ROBOT MAPS

4.1 Purpose

As discussed earlier, map files generated using the robot’s laser rangefinder may have
many points or representations of obstacles which should not be there. Also, walls that
really exist may occasionally fail to appear if the wall is transparent. To correct these
problems, a graphical user interface is needed to modify the map file. The map can be
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readily accessed from a base computer that receives the file from the robot’s wireless
Ethernet transmission. ActivMedia, the manufacturer of the robot already provides
software to edit the map. The ActivMedia Mapper 3 program allows users to eliminate
erroneous points on the map and insert lines that represent walls. It also allows users to
add goal points or destinations. Other additions that can be made to the map file include
forbidden regions and forbidden lines, which may not be actual obstructions in the
environment, but are nevertheless areas that the user wants the robot to avoid.

The Mapper 3 is fairly useful but for the purposes of this project, it is not sufficient. To
fulfill the necessary specifications that would allow for the creation of the continuous
path, the Mapper 3 would need to be able to partition the map into discrete regions
through triangulation or some other partitioning method. In addition, the Mapper 3 would
also need to be able to accept temporal logic formulas and construct a discrete path that
would ultimately lead to the continuous path for the robot to implement. Because the
Mapper 3 is not open source, it was decided that the best option would be to build a
graphical user interface from scratch that -- in addition to including most of the Mapper
3’s features -- would also allow for triangulation and path determination based on
directions given by temporal logic formulas. A crucial development requirement is that
the modifications made to any maps through this robot map GUI must still maintain the
map files’ compatibility with the robot.

The base computer that is used for the Pioneer 3-DX in this project is an IBM compatible
machine that runs Microsoft Windows. To build the GUI as a Windows application,
Microsoft Visual Studio .Net is used as the programming environment. C++ is used as
the programming language in Visual Studio .Net to construct the GUI as a Windows form
application. The choice to use Microsoft Visual Studio .Net rather than other
environments is based on the ease of use that Visual Studio .Net offers for programming
GUIs using the Windows operating system. The classes provided by Visual Studio .Net
particular to Windows GUI programs simplify the GUI programming significantly.

4.2 Development of the GUI

The first function to be developed for the GUI was to display map files correctly. Map
files have the extension .map and can be accessed from a basic text editor. A map file
generated by the Pioneer 3-DX always begins with the line “2D-Map”. The three lines
that follow this initial line pertain to obstacle points. Most environments would not have
obstacle points since walls are represented by lines. An obstacle point is most likely noise
since an obstacle point represents an object with an area of 1mm2. The three lines that
pertain to any existing obstacle points provide the minimum x and y coordinates and
maximum x and y coordinates in millimeters, as well as the number of obstacle points in
the map. The next three lines contain similar information for obstacle lines. Following the
information on obstacle lines, the map file contains the definitions for forbidden areas,
forbidden lines, goals, and home points in that order. Each line contains an individual
definition represented by coordinates in millimeters and begins with the word “Cairn:”
and the type of object defined. After definitions of these objects, the map file contains a
list of lines each of which consists of 4 numbers and represents two coordinates in
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millimeters. At the beginning of this list is the word “LINES” to signify that the list
consists of definitions for obstacle lines in the map. After this list is the list for obstacle
points which begins with the word “DATA”. This list contains lines of 2 numbers, each
pair belonging to the coordinate pair of one obstacle point.

To properly display the map file, the GUI must read the map file and utilize the
information provided to construct a graphical map. Extracting the data and drawing the
map lines and objects in the GUI’s main panel did not prove to be a complicated task.
However, the map’s coordinate system is inherently different from that used in Windows
forms programming. This can be seen in Figure 5. The + sign signifies the direction in
which coordinates increase positively. The map therefore needed to be adjusted according
to its maximum and minimum coordinates as they are given at the beginning of each map
file, flipping them vertically due to the inverting nature of the y axis in the Windows
forms coordinate system. For details, please refer to the translate function in the Form1.h
class in the Appendix. Another problem arose in the display of the map because the
coordinates given in millimeters were too great in magnitude to be displayed at a level for
the user to view the map as a whole. Therefore, the x and y parts of each coordinate need
to be reduced in magnitude through dividing by a reduction factor. The standard
reduction factor when a map is loaded is 50. This number was determined through trial
and error to produce a suitable viewing size for the map.

Figure 5: Differing coordinate systems: Windows form coordinate system (left) and
standard map coordinate system (right).

Even with the reduction factor at 50, the main panel is too small to display every map.
The map shown in Figure 1 of a floor in the Levine Building could not be fully shown in
the panel. To account for this problem, scrollbars were added to the GUI. The vertical
and horizontal scrollbars, whose limits are determined by the maps’ maximum
coordinates, successfully allow any map to be fully displayed. To allow for greater
viewing versatility, in addition to the scrollbars, two buttons were added to the GUI that
would control zoom. One button would zoom in on the image and essentially magnify it
by reducing the reduction factor. The second button would zoom out and essentially
shrink the image by increasing the reduction factor. With the addition of the zoom
functions, most maps can be scrutinized up close or viewed in their entirety without
scrolling on the main panel.
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The next functions to be implemented would allow for the additions of lines, goal points,
and regions to a map file. Three buttons are added to the GUI each to represent a type of
object to be drawn. For example, if the line button is pressed, the map file will only
accept the additions of lines. The reason these buttons are necessary is because each
object is drawn similarly using mouse clicks. Lines are to be drawn by clicking down the
mouse button at the site where the first endpoint should be. The mouse button is held
down until the mouse is moved to the second endpoint. Goals are drawn by clicking any
point in the map. For ease of viewing, goals are shown as small green squares. The center
of each square is the actual goal point. Regions are currently general custom structures
added to the map. They may constitute future forbidden regions but they can also be used
to parameterize the map. Though triangulation is likely to be the parameterization method
to be used, the regions’ function is currently programmed to construct any polygon. To
define a simple rectangle, the user only needs to click two points, which will always be
the upper left and the lower right vertices. The second point must be double clicked to
signify that the region will be a rectangle. Any other type of polygon can be constructed
by mouse clicks. Each mouse click will define a vertex and the last vertex will require a
double click signifying the end of the region definition.

The added lines, goal points, and regions are not saved to any files when drawn onto a
map. To register the additions made to the map, a save function was implemented in the
GUI. To maintain the integrity of the original map file and its compatibility with the
robot, the definition for each new line and goal must be added to the file in the
appropriate areas with the appropriate syntax. The regions defined in the GUI are not
necessarily forbidden regions and therefore their definitions are stored in an auxiliary text
file with a filename that is always the name of the original map followed by “_regions”.
In addition to saving the map files generated, the GUI will also save newly created map
files. The new map function in the GUI will generate a blank map with user defined
dimensions. Maps newly created from the GUI will be indistinguishable in format from
robot generated maps.

To date, the last function to be added to the GUI is the grid display and the position
tracker. When editing a map, it is useful to have a grid and to know the coordinates of the
region being modified. The grid function can be displayed when a map file is opened by a
click of the grid button. It can also be made invisible by a second click. Grid lines are
1000 mm or 1 meter away from one another. As a result, the perceived distances shrink
or grow when a zoom is applied to the map. The position tracker simply tracks the mouse
position over the main panel where the map is displayed. Whenever the mouse moves,
the tracker display located at the bottom right corner of the GUI is updated. The
coordinates are displayed in millimeters and properly match the coordinate system native
to the maps as portrayed in Figure 5.

The latest robot map GUI is shown in Figure 6. Each of the 9 buttons represents a
function described. The green square represents a goal point while the orange rectangle is
a region. The black lines represent walls in the map. The bottom of the window shows the
file currently being accessed. At the bottom right corner, the reduction factor is displayed
along with the current mouse position.
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Figure 6: Snapshot of the robot map GUI; the map file t.map is being loaded at a reduction factor of 50
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5. DISCUSSION AND CONCLUSIONS

The goal of the GUI in this project was to successfully access robot generated map files
and make modifications. In this aspect, the GUI in its current stage is fairly successful.
With the GUI, new lines and goals can be added to existing maps or created in new maps.
Robot compatibility with files modified and created by the GUI has been successfully
maintained. Regions which may be later used to partition the environment can be added
in the GUI. As the regions defined in the GUI are not directly useful to the robot, regions
made to a map file are stored in separate text file with a similar name as the original map.
The GUI, unlike the Mapper 3 offered by ActivMedia, does not allow users to add home
points or forbidden areas or lines. For the project at hand, these features do not appear to
be needed. However, if this should change in the future, simple modifications can be
made to the robot map GUI program to allow for the addition of home points, and
forbidden regions and lines.

One peculiarity of the GUI is that sometimes at large reduction factors, the coordinate
display may show coordinates slightly different from their expected appearance. The
scale of map coordinates stored is 1 mm per pixel on a monitor display. This scale can
only display a small piece of a map at any one time. To increase the distance per pixel so
that more of the map can be viewed at once on the screen without having to scroll around,
a reduction factor is maintained by the GUI. The reduction factor reduces the magnitude
of all coordinates in the map. For higher calculation speeds, the division of coordinates
by the reduction factor is made an integer division, dropping the decimals. This rounding
off results in slightly inaccurate displays in coordinates of up to a 10 mm deviation under
a reduction factor of 50. However, this slight inaccuracy is insignificant because 10 mm
is relatively small in any normal sized environment. Also, if accuracy is needed, the
zoom function can focus in on any area of a map. Though accurate work can be done by
zooming in or lowering the reduction factor, the smaller magnified portion of the map
will make editing work more difficult.

One key feature which has not been implemented in the GUI is an erase function.
Currently, cleaning up erroneous data points and lines requires the use of Mapper 3. The
erase function is fairly important as the GUI will eventually need to function independent
of the Mapper 3 in modifying maps. The only remedy for erasing lines or goals that were
inadvertently added is by reopening the map in the Mapper 3 and using its erase function.
An alternative method is to open the map file in a text editor. This method is painstaking,
however, as the user must know at least how many lines were added to the map file. The
most recent lines added are always added to the beginning of the list by the mapping
GUI. Currently, the only method by which added regions can be removed from a map is
to edit the region file with a text editor. A region file begins with a line that identifies the
number of regions in the map, followed by region definitions that are individually
identified by a number representing the order in which each was created. Each region
definition also identifies the number of points in the region and all the points that pertain
to the region. In order to be able to delete an erroneous region, a user would have to know
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either the defining characteristics of a region as determined by number of points and
point location, or when the region was added in reference to all other regions.

6. RECOMMENDATIONS

The most pressing focus for future research should be the creation of an erase function.
Besides providing independence from the Mapper 3, the erase function is also crucial to
deleting erroneous regions generated by the mapping GUI. These regions are not
accessible from Mapper 3 and currently can only be deleted through a text editor. File
verification safeguards are another feature that could be added to enhance the robustness
of the current GUI. Currently, when opening a file, the open file dialog filter allows only
files with .map extensions to be accessed. However, the program does not go further in
verifying that the actual map file is valid. If the format is invalid or the map file has been
tampered with, the program in its current state will just crash. Within the map file, the
maximum and minimum points which determine the size of the map to be displayed need
to be verified each time a map file is opened and corrected if they are inconsistent with
data. Occasionally, the maximum and minimum listed in the map file are not correct.
This results in some lines not being displayed in the GUI because the lines are out of the
range of the display created for the map.

The current version of the GUI is clearly not complete in the sense that it does not accept
temporal logic formula input nor does it partition the environment. Without these
functions, the mapping GUI is not substantially more enhanced in features than the
Mapper 3. The ability to define general regions is a step towards environment partitioning
since this feature can be integrated into a future partitioning function. The current region
creator can generate triangles and this will be useful since triangulation will likely be the
partitioning method. Upon successful implementation of map partitioning and temporal
logic formula processing in the GUI, further work in regards to path plan creation and
implementation will require working with ARIA classes. ARIA classes can be used to
implement the robot’s motion in a continuous path that is developed by the GUI. Saphira
and Colbert will not be used for two reasons. The first is that ActivMedia no longer
supports Saphira and will not offer future updated versions. The second is that ARIA,
being on a lower programming level, will provide more detailed control in
implementation.
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