In Vitro Investigation of Cytokine-Mediated Nucleus Pulposus Degeneration

Sarena Horava
Chemical Engineering, University of Massachusetts Amherst

Advisor: Dawn Elliott
Post-Doctoral Fellow: Lachlan Smith

Sunfest 2010
NSF REU program
Motivation

- **Low back pain**
 - High prevalence: 25% of US population
 - Physically and financially detrimental

- **Limited treatment**
 - Aimed at alleviating painful symptoms
 - Incomplete understanding of biological mechanisms involved

Degeneration of lumbar intervertebral discs is strongly implicated as a cause of low back pain.
Intervertebral Discs

- Spine consists of alternating:
 - Vertebrae
 - Intervertebral discs (IVDs)

- Function of IVDs
 - Transfer and distribute compressive loads
 - Permit spinal movement

http://www.spineuniverse.com/conditions/back-pain/anatomy-back-pain
Disc Anatomy

- Annulus Fibrosus (AF)
- Cartilaginous End Plates
- Nucleus Pulposus (NP)

http://www.chiropractic-help.com/L4-Lumbar-Spine.html
Nucleus Pulposus

- Pressurized gel
 - Randomly distributed network of collagen II
 - High hydrated extracellular matrix rich in proteoglycans

- Mechanical Function
 - In compression confined peripherally by AF
 - Generating a region of hydrostatic pressure

Human Disc Degeneration

- Degeneration starts in the NP
- Compositional Changes
 - Loss of glycosaminoglycans (GAG)
 - Loss of water
- Impaired mechanical function
 - Reduced NP pressure
 - Altered motion segment stiffness
- NP changes initiate a cascade expanding to other structures
 - Loss of disc height
 - Inward bulging of AF
 - Formation of tears

Cytokine-Mediated Matrix Degradation

- Pro-inflammatory cytokines
 - Interleukin-1 beta (IL1β)
 - Tumor Necrosis Factor alpha (TNFα)

- Naturally occurring inhibitors of cytokines
 - Interleukin-1 receptor antagonist (IL1ra)
 - Soluble TNF receptor 1 (sTNFR1)

- In IVD degeneration, up-regulation of cytokines, no matched increase of inhibitors
 - Increases in catabolic enzymes: MMP3, MMP13, ADAMTS4
 - Decreases in NP proteins: aggregan and collagen II
Previous Studies

- Association of IL1β with IVD

- Association of TNFα with IVD

Debate: roles of these cytokines in initiating NP matrix changes

Gap: what is the functional significance of these matrix changes?
Objective

Use an in-vitro NP model to investigate:

1. Effects of IL1β and TNFα on composition and mechanical function

2. Capacity of IL1ra and sTNFR1 to mitigate cytokine-mediated changes
Methods

- **Cell Isolation**
 - Mature NP cells isolated from bovine caudal discs

- **NP Constructs and Treatment**
 - NP cells seeded at 20X10^6 cells/ml in agarose gels (4mm diameter X 2.254mm thick)
 - Precultured 6 weeks with transforming growth factor beta 3 (TGF-β3) before treatment

<table>
<thead>
<tr>
<th>IL1 Treatment Groups (n=7)</th>
<th>TNF Treatment Groups (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL1β, 10ng/ml</td>
<td>TNFα, 10ng/ml</td>
</tr>
<tr>
<td>IL1β, 10ng/ml + IL1ra, 100ng/ml</td>
<td>TNFα, 10ng/ml + TNFR1,100ng/ml</td>
</tr>
<tr>
<td>IL1ra, 100ng/ml</td>
<td>TNFR1, 100ng/ml</td>
</tr>
<tr>
<td>Control (no treatment)</td>
<td>Control (no treatment)</td>
</tr>
</tbody>
</table>
Histology

- **Embedding**
 - Samples fixed in 4% paraformaldehyde and dehydrated in graded series of ethanol
 - Embedded in paraffin
 - Sectioned at 7 μm-thickness from middle

- **Staining**
 - Alcian Blue (AB): GAG
 - Picrosirius Red (PR): collagen
Mechanical Testing

- Confined compression
 - to replicate physiological conditions of NP

- Device
 - Acrylic chamber fixed above porous platen
 - Impermeable ceramic indenter for applying compression

- Tests
 - Static preload (0.02N for 500s): equilibrated thickness
 - Stress relaxation test: 10% strain applied at 0.05%/s, then relaxation to equilibrium for 10min

- Calculations
 - Aggregate modulus (H_A): final stress/applied strain
 - Hydraulic permeability (k_0): linear biphasic theory
Biochemical Analysis

- **Preparation**
 - Wet and dry weights of samples
 - Papain digestion for dried samples

- **Assays**
 - DMMB (1,9-dimethylmethylene blue dye-binding) assay: GAG
 - OHP (orthohydroxyproline) assay: collagen
 - First acid hydrolysis of sample digests
Results - Histology

- **GAG (AB):**
 - Uniformly distributed and intense
- **Collagen (PR):**
 - More diffuse, pericellular and intercellular

Histology staining for functionally mature constructs.
Results - Mechanics

- **IL1 Treatment Groups**
 - IL1β: 33% decrease in H_A and 41% increase in k_0
 - IL1β +IL1ra and IL1ra only: no significant difference

- **TNF Treatment Groups**
 - No changes in H_A and k_0

A. aggregate modulus,
B. hydraulic permeability (*p<0.05)
Results - Biochemical Analysis

- **GAG:**
 - IL1β: 27% decrease relative to untreated controls
 - IL1β + IL1ra and IL1ra only: no significant difference from controls, significantly greater than IL1β only
 - All TNF groups: no significant difference
- **Collagen:** similar trends as GAG, no significant differences

![Bar chart showing GAG and Collagen content](Image)
Conclusions

- IL1β plays a more direct role than TNFα
 - Mechanical and biochemical analyses: significant effects for IL1 treatment groups, not TNF groups
 - Short-term exposure to IL1β induced matrix changes that are functionally significant

- Significant inhibitory effects place IL1ra as a key therapeutic agent
 - IL1ra can effectively prevent NP matrix changes and associated functional changes induced by IL1β

- Results are clinically significant for developing novel treatment approaches for IVD degeneration
Future Work

- Investigate gene expression
 - Down-regulated anabolic genes and up-regulated catabolic genes associated with degeneration
 - Quantify changes in catabolic enzyme activity and matrix synthesis following cytokine exposure

- Develop biodegradable polymeric microspheres to deliver therapeutic agents

- Evaluate therapeutic agents in an in-vivo model of disc degeneration
Acknowledgements

- National Science Foundation
- SUNFEST
 - Jan Van der Spiegel
- McKay Orthopaedic Research Laboratory
 - Dawn Elliott
 - Lachlan Smith