
SUNFEST Technical Report TR-CST01DEC05, Center for Sensor Technologies, Dept of Electrical and
Systems Eng, Univ. of Pennsylvania, Philadelphia, PA 2005

University of Pennsylvania

SUNFEST

NSF REU Program
Summer 2005

WORKING TOWARD A BETTER VISION-BASED OBSTACLE
DETECTION METHOD

NSF Summer Undergraduate Fellowship in Sensor Technologies
Roman Geykhman (Dept. of Electrical and Systems Engineering) - University of

Pennsylvania
Advisor: Dr. Dan Lee

ABSTRACT

Obstacle detection is a vital component of any autonomous mobile robotics

application. Vision-based systems for obstacle detection offer the advantage of using
relatively inexpensive and readily available video cameras to supply a mobile robot with
information about its environment. The key challenge, however, is that cameras supply
too much information and complicate the efficient, automated extraction of meaningful
features from raw images. Fast and effective obstacle acquisition from this input is still
an unsolved problem in robotics.

This paper documents the experimental development of an accurate and efficient

vision-based obstacle detection method using the Learning Applied to Ground Robotics
(LAGR) experimental platform. The LAGR platform is designed to test algorithms for
the successful autonomous navigation of an unmanned vehicle through rural terrain,
relying almost entirely on vision to collect information about the environment. The
platform is equipped with two pairs of stereo cameras, each with a dedicated Pentium-M
computer committed to processing its input and converting it into meaningful information
about obstacles present in the platform's environment.

This project focuses on the use of low-level filtering and curve-fitting techniques to

enable mobile robots to extract enough information about surrounding obstacles to
successfully avoid them. The study is focused on developing and testing new and
preexisting algorithms that will also enable the robot to avoid false detection without
expending too much computation time in the process. The algorithms will be
implemented in C and MATLAB code and tested on board the LAGR platform using
both real-time and prerecorded stereo image pairs.

1

Table of Contents

 1. INTRODUCTION 3
 2. PRIOR WORK IN ROBOT VISION 3
 2.1 Stereo Vision 3

 2.2 The Correspondence Problem 5
 2.3 A Review of Obstacle Detection Methods 7
 3. HARDWARE AND DESIGN TASK 8
 3.1 Onboard Cameras and Vision Software 9
 3.2 Design Goal 9

 4. DEVELOPMENT OF A BETTER VISION ALGORITHM 10
 4.1 Initial Vision System Status 10
 4.2 Initial Improvements of the Vision System 11
 4.3 Obstacle Detection by Disparity Segmenetation 12
 4.4 The Final Obstacle Detection Algorithm 13

 5. SUMMARY OF EXPERIMENTAL RESULTS 17
 6. DISCUSSION AND CONCLUSIONS 17
 7. RECOMMENDATIONS 18
 8. ACKNOWLEDGEMENTS 18

 9. REFERENCES 18

2

1. INTRODUCTION

Effective obstacle detection is a vital component of any mobile robotics application.

Several methods exist for obtaining information about a robot's environment, using
various sensors such as RADAR, SONAR, and laser range-finders. These types of
sensors are generally quite accurate, and can be calibrated to provide very precise range
and direction data about obstacles in the environment. However, despite any possible
accuracy and range benefits these methods offer, they suffer from the fact that they each
require specialized and expensive equipment to implement.

Vision-based obstacle detection methods offer the significant advantage of using

relatively inexpensive, off-the-shelf video cameras as the chief method for obtaining
information about the environment. It also offers the guarantee that each frame of video
carries enough information about the environment to sufficiently detect all visible
obstacles. Whereas typical SONAR receivers and laser range finders are usually
configured to receive data from only one direction or only one plane, cameras are able to
see and record a significant portion of the mobile robot's environment and get the “whole
picture.” The problem with vision-based obstacle detection methods is that, while they
provide sufficient information about obstacles, they in fact provide too much information,
making the effective recognition of features a relatively involved process.

Numerous existing techniques can be used to extract meaningful features from

images, and to classify those features as obstacles in the robot's environment. This paper
will focus on the development of a relatively fast and accurate low-level system to detect
obstacles from pairs of stereo images in order to facilitate the autonomous navigation of
the Learning Applied to Ground Robotics (LAGR) experimental platform. These
techniques and methods will focus mainly on modeling the low-level geometry of the
robot's environment, using both commercial and custom-coded vision software.

2. PRIOR WORK IN ROBOT VISION

 2.1 Stereo Vision Basics

One of the simpler obstacle detection methods involves the use of fixed pairs of

cameras in order to triangulate the locations of obstacles. As Figure 1 illustrates, two
images are captured using neighboring cameras pointed at the same object. Each camera
has a set of pixel coordinates for each point on this object. The triangle outlined in red
lies on the epipolar plane. By definition, this plane passes through the point in space
under observation and the optical centers of both cameras. It is evident that corresponding
pixels in the two cameras must lie on the same epipolar plane.

 It is a fact that this plane does not always intersect horizontal scanlines. However,
if the relative orientation and displacement of the two cameras' optical centers is known,
a coordinate transformation can be performed on both images in order to map epipolar
lines in the raw image to horizontal scanlines in the transformed image. This process is
known as rectification and reduces the search for matching image features to a one-

3

dimensional problem, as matching image features are, by construction, mapped to the
same horizontal scanline in both images.

Figure 1: Geometry of Stereo Vision.
 Epipolar plane is in red. Epipolar line is in grey.

 The triangulation equations are illustrated in Figure 2, and the equations for the

real-world coordinates of the object under observation are enumerated in Table 1. By
inspection, the equations are derived from manipulations of similar triangles in Figure 2.

Figure 2: Triangulation Geometry in Stereo Vision

f
dy

y

f
dxx

fbd

f
x

f
x

d
xb

f
x

d
x

r

r

rl

r

=

=

=

+
==

+

=

δ

δ

. . .

Table 1: Triangulation Equations in Stereo Vision

4

The equations in Table 1 reveal that in three dimensional space, the x-, y-, and z-
coordinates of the image feature are all proportional to the inverse of disparity.
Consequently, the uncertainties in these coordinates are proportional to the inverse square
of the disparity. This error is nearly negligible for close objects, but for far objects, it can
become as high as 1 meter. Given also that at large distances, the quantization of
disparity values becomes noticeable, it is not reasonable to expect truly accurate data at
low disparities. Subpixel interpolation methods exist to increase the precision of the
feature matching algorithms at low disparity, and these algorithms may significantly
improve the precision of range data obtained from the stereo image pair [1, pp. 35-38].
But there is an associated computation cost which, for the purpose of rough estimates of
obstacle position (the required map resolution is only 0.5 m), is unnecessary.

 2.2 The Correspondence Problem

Finding matches between features in stereo image pairs is known as the

correspondence problem. The usual methods for establishing the necessary
correspondence between image features involve comparing pixels from one image to
possible corresponding pixels in the other image and determining a “goodness of match”
criteria for the pairing.

A very popular and relatively fast method for establishing correspondence between

features in grayscale images is the minimization of the sum of absolute differences of
pixel values in patches of image in the left and right frames (as a function of
displacement). In this method, a small patch in one image is compared pixel-by-pixel
with identically sized patches in the other image which lie along the same scan line. The
sum of each difference between corresponding pixels is then taken to be the difference
between the two patches. Under ideal conditions, the minimum of this difference would
occur where the two patches contain views of the same physical object in their respective
images. Once this minimum is found, the coordinate difference between these matching
patches is the disparity of that image feature. A pair of rectified images taken from a pair
of stereo cameras is shown in Figure 3a. A disparity image, generated from this image
pair with 7 x 7 pixel patches, is shown in Figure 3b. Blue indicates low disparity and
yellow indicates higher disparity. Dark red indicates no data.

Figure 3a: Left and Right Rectified Images

5

Figure 3b: Disparity Image

Correspondence matching, is, however, not an error-free process. As is evident from

Figure 3a and Figure 3b, establishing an accurate correspondence between image features
is not a trivial task. The disparity image in Figure 3b does not capture information about
the wall to the right side, the far wall with the whiteboard, and parts of the floor. Indeed,
it is seen that regions with low contrast are not captured in the disparity image
calculation. Such regions offer insufficient features for making a definitive match
between image patches by the sum of absolute differences algorithm operating on 7 x 7
pixel neighborhoods. This effect is illustrated in Figure 4.

Figure 4: Sum of Absolute Differences Algorithm in Low Contrast Regions

The center top pane shows a rectified image with the region of comparison

highlighted in the bottom right of the image. The top left and top right panes show a
magnification of the region of interest in the left and right rectified images. The bottom
right pane shows the 8 x 8 pixel magnification of the patch in the right image being
compared with successive patches in the left image in the disparity calculation. The
bottom center pane shows the sum of absolute differences as a function of displacement.
Now, the region of interest lies on the ground directly in front of the robot, approximately

6

1 meter in front of the camera. With the geometry of the camera system, this would
correspond to a disparity value of approximately 40 pixels. However, as can be seen in
the bottom center pane, the low contrast of the region of interest causes very low sum of
absolute difference values for displacements of anywhere from 10 to 45 pixels. Indeed,
with this kind of difference data, no clear minimum is evident and a disparity value
cannot be assigned without ambiguity. In fact, it is entirely plausible that random errors
in the images determine the absolute minimum of this difference, and that the horizontal
coordinate of this minimum value will have no relation to the actual disparity of the
image feature being observed. The identification and elimination of these kinds of
uncertain disparities is known as validation, and will be discussed in Section 4.

 2.3 A Review of Obstacle Detection Methods

In order to identify obstacles in an image, it is necessary to perform some kind of

segmentation. In one way or another, pixels (and their projections into 3D space) need to
be grouped into obstacles and non obstacles. The search for effective segmentation
processes is a topic of ongoing research in computer vision, and various methods and
criteria are being studied to identify whole objects in images. Despite the precise detail
and robustness that these methods promise, they are too computationally intensive for the
current hardware to execute in a reasonable time frame.

Segmentation methods such as the normalized cuts approach [2] yield very good

segmentation results on complex scenes. However, they take several minutes just to
segment a single frame of video. While these techniques can be a springboard toward
more complicated tasks such as higher level object extraction, recognition, and
classification, for the purpose of simply detecting obstacles, they do too much work.

The precision of hi-level segmentation notwithstanding, low-level techniques can

accomplish quite a bit in the area of simple detection. The majority of these methods
work with disparity images generated from rectified pairs of stereo images. Successful
low-level operations are possible on this kind of data, as it contains all the information
about the 3D coordinates of every pixel in the camera image.

Many low-level obstacle detection techniques involve the brute-force projection of a

three-dimensional point cloud into the robot's environment. Several possibilities exist for
further processing the data. Some of the more successful techniques are outlined below.

One approach, as described in [3], is to take the point cloud and extract, by various

statistical methods, an estimate for the ground plane. This estimate is then converted into
a set expected disparity values for every point in the image. Significant deviations from
this expected value are classified as obstacles, and the coordinates of each pixel
comprising these obstacles are then easily calculated and projected into a map of the
environment.

The current implementation of the obstacle detection algorithm on the LAGR

platform uses a similar method to populate a cost map of the environment with counts of
stereo points that lie above a similarly-obtained ground plane estimate. This cost map is
then taken directly to the planning algorithm.

7

Noise due to false matches can be a big problem with both of these methods. The
process of using raw stereo count data to populate a local obstacle or cost map is very
susceptible to false detections brought about by spurious data.

The other, more critical problem arises from false correspondences with high

disparity. This noise will generally be projected very close to the robot. Furthermore,
given the projective nature of the camera, it will all be projected into the same region
near the front of the camera. This will artificially inflate the stereo point count of the
region directly in front of the robot and cause an artificial obstacle to appear directly in
the robot's path. For purposes of navigation, this poses a significant problem. In practice,
a certain region in front of the robot is always assumed to be obstacle-free and stereo data
that places obstacles in it is ignored. This eliminates problems caused by false matches,
but also makes it impossible to detect actual obstacles in that region.

D.R. Murray's work in stereo vision [1] brings up several key problems in the

filtration and processing of disparity images. One issue is that the projective nature of the
camera reduces the pixel count of objects as their distance from the camera increases,
thereby reducing the number of data points for far-off objects. The other is that
manipulating raw point data is subject to certain limitations. As has been mentioned,
manipulations of this data are highly susceptible to noise, lose accuracy with distance,
and effectively do too little work to detect obstacles.

Furthermore, low level noise reduction algorithms can only go so far. It is a self-

evident fact that humans have a certain intuition about vision that allows them to make
high-level descriptions of complex scenes without necessarily requiring access to the low
level computations that occur in their visual cortex. One of these intuitive notions is the
fact that most obstacles that may be encountered in the world are contiguous elements in
three-dimensional space, and generally are smooth and thus exhibit only gradual changes
in the surface normal vectors over their surfaces.

Murray's work has shown that surface orientation is indeed a good criterion to use in

segmenting stereo images for use in higher-level computations and algorithms. The
remainder of this paper will explore the use of surface orientation as a low-level spring-
board to accurate and fast obstacle detection.

3. HARDWARE AND DESIGN REQUIREMENTS

The purpose of this project was to develop an improved vision-based obstacle

detection algorithm for the Learning Applied to Ground Robotics (LAGR) platform,
shown in Figure 5. This platform is equipped with two pairs of stereo cameras, a
dedicated 2GHz Pentium M computer for each pair, a central planning computer, and a
low level computer to interface with the robot's hardware.

8

Figure 5: LAGR Test Platform

 3.1 Onboard Cameras and Vision Software

The two onboard camera pairs come with the commercial Triclops/Digiclops stereo

matching and image rectification software. This software includes several built-in filters
and validation methods. Stereo point correspondence is established by a Sum of Absolute
Differences algorithm. Several validation methods are used to eliminate false matches: a
texture check, which ensures that featureless, low-contrast, regions are not scanned, a
uniqueness check, which checks the “goodness” of the minimum in the sum of absolute
differences compared with other minima along the scanline, and a surface size validation
check. The exact details of the algorithms implemented in the Triclops libraries are not
made available for inspection. Their effectiveness is discussed in Section 4.2. The image
resolution used for this project was typically 512 x 384 pixels.

 3.2 Design Goal

The LAGR platform is tested in a rural environment, and is expected to be able to

navigate its way around reasonably textured obstacles such as trees, bushes, shrubs,
rocks, and fences. It is not required to classify these objects as anything other than
obstacles in order to navigate around them. The robot will be navigating mostly over dirt
trails and grassy surfaces, which experience has shown, generally provide sufficient
texture to be accurately recognized as contiguous surfaces for ground detection. Typical
examples of the terrain are shown in Figure 6.

Figure 6: Typical Terrain for Autonomous Navigation

9

 The primary need is to design a software system that will accurately detect obstacles
observed through the pairs of stereo cameras and construct a map of the robot's
environment as faithfully and reliably as possible, while utilizing as little computation
time as possible. A desired value for processing time of one frame of video is typically
less than half a second.

4. DEVELOPMENT OF A BETTER VISION ALGORITHM

 4.1 Initial Vision System Status

 Initially, obstacle detection on the LAGR platform was done using the projection
of a 3D point cloud from a filtered disparity image. This point cloud was then broken up
into a two-dimensional grid of rectangular columnar cells 0.5 m in width by 0.5 m in
length. Cells in which the vertical standard deviation of stereo points was low were used
in order to extract a ground plane estimate. This ground plane estimate was then used to
classify the remaining stereo points as obstacles if they fell in a region from
approximately 0.25 to 1.25 meters above the ground plane. A traversal cost was then
calculated for each cell based on the number of stereo points in each cell classified as
obstacle points. This cost was taken directly as the obstacle map. An example of such a
map, constructed from an indoor scene, is shown in Figure 7. Lighter cells indicate high
traversal cost and darker cells indicate lower traversal cost.

Figure 7: Indoor Scene and Cost Map Generated By Point Cloud Projection

 This approach suffers from one main drawback. If a cell contains both ground

points and obstacle points, it will not be used in the ground plane estimate because of the
high spread in the z-coordinates of the points in the cell. Furthermore, the criterion used
to classify a cell as containing ground points assumes that the ground is relatively flat in
the robot coordinate system. As Figure 8 shows, a flat sloping ground surface will yield a
higher vertical standard deviation, and will be more likely to be rejected for ground plane
estimation. Furthermore, if the robot is facing a sloping hill, it may not get any cells with
sufficiently low z-coordinate standard deviation, default to using a flat-ground
assumption, and register the hill's stereo points as an obstacle, impeding the robot's ability
to effectively reach its goal.

10

Robot Hill +Z axis
 Cell
 high vertical span

 +X axis (flat gound)

Figure 8: Problems Caused by Sloping Ground

The solution to this problem is to increase the threshold for the maximum vertical

standard deviation a cell can contain to still be considered a valid ground point.
Unfortunately, this will have the detrimental effect of throwing off the accuracy of the
ground plane estimate. This ground plane issue, has, in fact, been a major problem in the
vision system to date.

 The other problem with the vision system has been the false detections caused by

the incorrect matches discussed in Section 2. Specifically, incorrect matches in low-
contrast regions such as the sky have resulted in false obstacles being detected directly in
front of the robot, causing problems with navigation.

 4.2 Initial Attempts at Improvement of the Vision System

The first attempt to improve the vision system involved experimentation with

filtration and validation methods on the stereo matching algorithm. Various methods for
rejecting false matches generated by the sum of absolute differences minimization were
explored.

Three of these algorithms were supplied with the Triclops package that came with

the LAGR platform. These were the texture validation, uniqueness validation, and surface
size validation. The fourth algorithm was a back-checking confirmation, which compared
left-to-right disparity values with their right-to-left counterparts. Mismatches were
rejected as invalid.

The problem with the texture and uniqueness validation was that while they

succeeded in eliminating most of the spurious data, they also eliminated valid obstacle
and ground points. Because the obstacle detection algorithm relies heavily on being able
to extract an accurate ground plane estimate from the stereo data, this posed a significant
hindrance. After some experimentation on prerecorded images, it was decided that any
benefit of error reduction was outweighed by the cost of loosing valuable ground and
obstacle data, and consequently, these two validation methods were not employed.

The back-checking confirmation algorithm proved quite effective at eliminating false

readings without rejecting valid readings. The disparity images produced by this
algorithm were generally accurate and had few incidences of false data, especially when
combined with relatively mild uniqueness and texture checks. A significant problem with
this approach was the additional overhead and computation time required to make the
comparison for every pixel in the disparity image. In practice, the generation of the
disparity image takes about 33% of the total computation time for each frame of video,

11

and the cost of increasing it by executing what amounted to only a low-level filtration
step was not acceptable.

The final validation technique, surface size validation, proved extremely effective at

eliminating false detections while preserving true readings. This method works on the
assumption that spurious readings will be small in size in the disparity image and rejects
objects that fall below a certain size threshold. This method was so effective that it was
incorporated into all subsequent obstacle detection algorithms.

Yet despite any improvements gained from low level filtration techniques, spurious

readings still managed to find their way into the disparity image, and the problems of
sloping ground and cells occupied by both ground and obstacles remained. These
problems served as the motivation for a higher level analysis of the disparity image.

 4.3 Obstacle Detection Based on Disparity Image Segmentation

A cursory glance at any disparity image, such as Figure 9, will immediately suggest

a method of obstacle detection. It is a fact that obstacles appear in the disparity image as
large contiguous objects with gradually changing disparity values over their area. It was
thought that the extraction of such large contiguous objects could be an effective method
of obstacle detection.

Figure 9: A Disparity Image

Figure 10: Segmentation of Figure 9. Regions of the same color are unified objects.

12

A
cont ured

However, this simplistic approach suffers om two related and important drawbacks.

Firs
ond,

s

hat was required was a way to separate the objects that sit on the ground from the
grou

een

h Murray's

 4.4 The Final Obstacle Detection Algorithm

ow, intuitively, visual information contains only data about the surfaces of nearby
obje

er to

irst, a disparity image is generated by the commercial Triclops software from
rect ing

 simple union find algorithm—similiar to the one used to measure the size of
iguous objects for the surface size validation—was run on disparity images capt

through the LAGR's stereo cameras. As Figure 10 shows, many obstacles seen in the
disparity image in Figure 9 are indeed successfully segmented out and separated into
discrete units. Once this is done, criteria such as real world size and height above the
ground may be used to populate not a continuous-valued cost map susceptible to false
readings, but a discrete-valued binary map showing precisely where the large obstacles
are in the robot's environment.

fr
t, it does not solve the problem of obtaining an accurate ground plane estimate,

which, as was mentioned before, creates a problem in sloping or uneven terrain. Sec
as is evident in Figure 10, objects that are sitting on the ground blend into the ground in
the disparity image, and a union-find algorithm will classify both the object and the
ground it is sitting on as a single unit. Potentially, entire swaths of ground and object
will be classified as a unified body, and cause the map to be populated with obstacles
where none exist.

W
nd itself. Murray accomplished this by computing a surface normal vector for a

curve fit to each pixel's neighborhood and using it as the segmentation criterion. As s
in [1], this method is quite successful. Unfortunately, it requires quite a bit of
computation time—up to 2 minutes per frame for a 320 x 240 image. Even wit
proposed code optimizations, his method is designed to extract highly precise information
about complicated surfaces. This was not the goal of this design. Since the only required
data was a fairly rough estimate of where an obstacle is located, and not any information
about its structure, a slightly cruder algorithm was in order.

N
cts. Further intuitive reasoning will reveal that most obstacles are vertical and that the

ground is mostly horizontal. The final version of the obstacle detection algorithm
developed over the course of this project employs these simple observations in ord
classify stereo points generated from a regular disparity image as obstacles or ground
points based on the orientation of the normal vector of dynamically determined surface
elements in the image. A flowchart of the algorithm is given in Figure 11.

F

ified image pairs. The right rectified image is shown in 11 (a) and the correspond
disparity image in 11 (b). From (b), the distance image is calculated using the equations
of Table 1. In order to save computation time, the x- and y-coordinates are also calculated
for each pixel, as they will be required in future steps. Next, the distance image is split
into 32 x 32 pixel nonoverlapping regions and the union-find algorithm is executed on
these 32 x 32 pixel patches in order to extract contiguous surfaces for the calculation of
surface normal vectors. It should be noted that the initial splitting of the image avoids the
problem of having objects blend into the ground by keeping the segmentation algorithm
confined to the local 32 x 32 pixel region.

13

 (a) Rectified Image (b) Disparity Image

(c) Normal Vector Dot +Z (d) Normal Vector Cross +Z

 (e) Horizontal Surfaces (f) Vertical Surfaces

Figure 11: Obstacle Detection Algorithm Flowchart (Part I)

14

(g) Final Classification of Stereo Points (Red = Ground, Blue = Obstacle)

(h) Bird's Eye Map of Local Environment (Robot is at (0,0); Red Dot = Obstacle)

Figure 11: Obstacle Detection Flow Chart (Part II)

For each contiguous object extracted by the union find algorithm in the 32 x 32 pixel

patches, the 3D coordinates of all the pixels comprising that object are collected. From
these points, a plane of best fit is calculated by means of orthogonal distance regression.
As Figure 12 and the equations in Table 2 show, this problem is solved by finding the
eigenvectors of the covariance matrix generated by the 3D coordinates of the points
comprising the object. The eigenvector corresponding to the minimum eigenvalue gives
the direction of the surface normal vector.

Figure 12: Orthogonal Distance Regression

15

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∑∑∑

∑∑∑

∑∑∑

3

2

1

3

2

1

321

00
00
00

111

111

111

v
v
v

vvv

dzdz
n

dzdy
n

dzdx
n

dydz
n

dydy
n

dydx
n

dxdz
n

dxdy
n

dxdx
n

λ
λ

λ

Table 2: Equations for Orthogonal Distance Regression

Once this surface normal vector is computed for each object in each 32 x 32 pixel

patch, it is dotted with the +Z direction of the vehicle coordinate frame. Absolute values
of this dot product near 1.0 indicate a highly horizontal surface likely to be the ground
and absolute values of this dot product near 0.0 indicate vertical surfaces most likely to
be obstacles. This dot product value is recorded in a new image for each pixel in each
contiguous object, and the corresponding cross product value (= sqrt(1 – dot2)) is also
recorded in a separate image. Figure 11 (c) and 11 (d) show the absolute value of the dot
and cross products of the surface normal vectors with the +Z axis in the vehicle
coordinate frame. It can be seen that in Figure 11 (c), ground points are brighter,
representing a high value for the dot product, and in 11 (d), the cross product values are
higher for vertical obstacles.

After this initial low level classification step, a ground plane estimate is obtained by

searching for large contiguous regions of pixels classified as horizontal ground points
with a union-find algorithm operating only on pixels belonging to sufficiently horizontal
surfaces. In Figure 11, orientations within 30 degrees of absolutely horizontal were
included. The results of the union-find are then processed by an arbitrarily-chosen plane-
fitting algorithm. For the purposes of this experiment, orthogonal distance regression was
used in this step. Similarly, vertical obstacles are extracted by running the same union
find algorithm on the distance image, but now using only the pixels previously classified
as belonging to vertical surfaces by the low level preliminary classification step. The
horizontal and vertical results of the union-find algorithm are displaying in Figure 11 (e)
and 11 (f), respectively.

Once the ground plane estimate is obtained, and the coordinates of the vertical

obstacles are extracted from the step above, the map generation step is trivial. Each
vertical obstacle has a set of points with coordinates in the vehicle coordinate system.
The point has a vertical span, a horizontal span, and a horizontal orientation given by the
maximum eigenvector of the covariance matrix generated by the x- and y-coordinates of
the points corresponding to the obstacle. These quantities are compared with certain
thresholds for height above the ground plane, pixel count, and absolute size in the robot
coordinate system. Objects satisfying these thresholds are classified as valid obstacles.
Figure 11 (g) shows the final classification of pixels in the stereo image superimposed
onto the rectified image. Areas shaded red are composed of pixels classified as belonging
to large horizontal objects assumed to be the ground, and areas shaded blue are
comprised of pixels classified as belonging to vertically-oriented objects satisfying the
aforementioned criteria. Once these ground points and obstacles are classified, their
coordinates are recorded in the local environment map, as shown in Figure 11 (h).

16

5. SUMMARY OF EXPERIMENTAL RESULTS

The results in Figure 11 and Figure 13 are typical examples of the accuracy with
which the algorithm can operate. As can be seen in Figure 11, all major vertical obstacles
that have sufficient contrast to be detected by the stereo system are faithfully placed into
the local map in Figure 11 (h). Figure 13 (a) shows the indoor scene from Figure 7, with
artificially added texture in the form of garden fencing along the otherwise featureless
wall along the right side. It is seen in Figure 13 (b) that the algorithm accurately records
the entirety of the wall as an obstacle, as well as the ladder and small robots toward the
back of the room.

Compared with the results of the current vision algorithm (in Figure 7), the results of

the new algorithm in Figure 13 seem much sharper in terms of what is an obstacle in the
robot's environment. The entire wall can be seen as impassible, whereas Figure 7 shows
fading traversal costs over its length.

The discontinuities in the wall seen at farther distances in the map are a consequence

of the uncertainty of obstacle position increasing with lower disparity values, as
discussed earlier in Section 2.1. Average execution time per frame of video peaked at 1/6
– 1/5 seconds per frame.

 (a) Rectified Image (b) Local Map (Red = Obstacle)

Figure 13: Indoor Scene and Map

6. DISCUSSION AND CONCLUSIONS

Effective obstacle detection is a vital component of autonomous navigation, and

vision-based obstacle detection methods offer the advantage of cheap sensors, wide
viewing angles, and a guarantee that the raw data from the cameras contains sufficient
information about the environment in order to generate an accurate and reliable map.
Stereo vision offers the ability to effectively locate objects in three-dimensional space
with relatively simple and fast algorithms, and the ability to access object properties such
as size, location, and surface orientation.

17

The algorithm developed over the course of this project uses these simple properties,
surface orientation, in particular, to generate accurate, reliable, and stable maps, and has
proved to be robust when faced with variable environmental conditions such as sloping
terrain. Testing has shown it to be reasonably resistant to noisy stereo data and false
detections, as compared to the obstacle detection algorithm previously implemented on
the LAGR platform, and as seen in Section 7, the maps it generates are much more
decisive in terms of what is and what is not traversable. Furthermore, it is sufficiently fast
to be used in real time on a mobile platform. Its success is further confirmation of the
effectiveness of using surface orientation as a classifying criterion for 3D stereo data.

7. RECOMMENDATIONS

 After considerations of various low-level obstacle detection algorithms, it is

recommended that the algorithm developed during the course of this project be
implemented on the LAGR platform in order to improve its ability of effectively identify
obstacles in its environment. This algorithm offers the advantages of reliability,
robustness, and accuracy. Furthermore, the algorithm can be easily implemented as a
starting point for more sophisticated obstacle detection techniques that rely on learning
algorithms and other hi-level techniques.

8. ACKNOWLEDGEMENTS

I would like to thank the many people without whose generous support, this project

would not have been possible. Professor Daniel Lee of the University of Pennsylvania
Electrical and Systems Engineering Department has been a source of invaluable wisdom
and guidance. His support as an advisor is much appreciated. Paul Vernaza of the
University of Pennsylvania GRASP Laboratory is a master guru of robotics hardware.
His assistance with technical issues and software allowed this project to proceed
smoothly and efficiently. Many thanks also to the National Science Foundation, whose
support for undergraduate research initiatives made this project possible, and to the
University of Pennsylvania Department of Electrical and Systems Engineering
Department for hosting the REU. And, of course, many thanks to Prof. Jan Van der
Spiegel for capably managing this undergraduate research program.

9. REFERENCES

1. D. R. Murray, Patchlets: a method for interpreting correlation stereo 3D data, PhD
Thesis, University of British Columbia, 2004.

J. Shi, and J. Malik, Normalized cuts and image segmentation, IEEE Transactions
on

2.
Pattern Analysis and Machine Intelligence, Vol 22, Issue 8, Aug. 2000, 888 –

905.

3. N. Molton, S. Se, J.M. Brady, D. Lee, and P. Probert, A Stereo Vision-Based Aid
for the Visually-Impaired, Image and Vision Computing Journal, Vol 16, No 4,
(1998) 251 - 263.

18

