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ABSTRACT 
 
In hopes of improving real-time speech recognition, a biologically based phoneme 
recognition algorithm was implemented on the NP-4 neural computer.  The NP-4 neural 
computer, which contains programmable interconnects, neurons, synapses, and synaptic 
time constants, is extremely useful in computation of real-world dynamic patterns as they 
occur in speech.  Prior to this summer, some implementations were done on the NP-4 
neural computer, and the goal during this summer was to improve work done in early 
stages.  The newly developed algorithm, implemented in the host computer, allows 
neurons to be trained to respond to a particular phoneme.  Testing was performed once 
the network was trained to find the overall responses of the neurons.  The algorithm 
shows much promise for recognition of phonemes, with over 90% positive responses.  
 

1. INTRODUCTION 
 
For the past few years, many researchers and companies have devoted time and money to 
developing reliable real-time speech recognition programs and designs.  Many different 
approaches have been suggested, with variable degrees of success to date; the statistical 
analysis method has been one of the most successful.  However, more and more 
researchers have come to gain a new perspective on biologically motivated systems, 
many of which have proved to be far more efficient.   
 
The resurgence of neural network research has motivated efforts to utilize knowledge 
about biological aspects of speech recognition in hopes of increasing the reliability of 
speech recognition.  This paper describes the approach taken using the 
Corticon/University of Pennsylvania NP-4 neural computer for real-time speech 
recognition. 
 
2. ARTIFICIAL NEURAL NETWORKS AND THE ANALOG NEURAL  

COMPUTER 
 
2.1 Artificial Neural Networks 
  
Artificial neural networks are information-processing systems with certain performance 
characteristics in common with biological neural networks. Four basic assumptions 
underlie the generalization of mathematical models of neural biology [1]: 
 

1) Many simple elements called neurons process information 
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2) Signals are passed between neurons over a connection link 
3) Signals transmitted in neural nets are multiplied by synaptic weights, which are 

associated with the connection link 
4) The output of the neuron is determined by the activation function applied at its 

input 
 
2.2 The Analog Neural Computer 
 
The NP-4 neural computer consists of programmable interconnects, neurons, synapses, 
and synaptic time constants.  The computer runs in analog mode, but the whole network, 
including the synaptic weights, neuron parameters, and time constants, is set by the 
digital host.  The synaptic weights are programmable over 3.5 orders of magnitude, the 
time constants are programmable between 1 microsecond and 1 second, and the neuron 
transfer function can be selected.  The neurons operate by taking the sum of weighted 
inputs, which produces a corresponding output that relates either linearly or non-linearly 
to these inputs.  Figure 1 below describes the simple operation of the neural computer: 
 

Figure 1: Neural network schematic 
 
3.  METHODOLOGY 
 
3.1  Overview of Implementation 
 
The implementation of vowel recognition algorithm is based on the two basic intrinsic 
elements of speech: amplitude and frequency.  For different sounds, the amplitude and 
frequency combination differs.  Since different amplitude-frequency distributions define 
different phonemes, the vowel recognition algorithm was implemented using this very 
property.   
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The algorithm was designed so that when the vowel sound is presented, the network is 
programmed and the network is trained.  The sound needs to be presented only once.  The 
training of neurons mean the synaptic values connecting to each output neuron are 
calculated and set so that the neuron will respond only to that sound.  Only one output 
neuron can be trained at a time. 
 
The input to the neural computer comes from band pass filters.  The phoneme is passed 
through 16 such filters, and these 16 different band frequency signals are then fed into the 
neural computer.  The overall topology of the algorithm can be broken into three major 
layers: the preprocessing layer, which includes the center surround function and the high 
energy cut-off function; the inverse layer; and the output layer, which includes the mutual 
inhibition that couples the output neurons.  The overall topology of the network is shown 
in Figure 2 below: 
 

 
Figure 2: Overall schematic 

 
3.2  Center Surround Function 
  
The preprocessing stage of the algorithm is necessary for reducing the noise and 
emphasizing the input signals that come from the band pass filters.  The 16 inputs 
received from the band pass filters are first routed into 16 neurons through the synapses 
in the neural computer.  Since each signal consists of a different frequency band, the 
synapses are set to emphasize the signal of that band and repress the others.  In other 
words, each neuron is responsible for heightening the band with which it is associated 
while reducing effectively the others.  This ensures that the incoming signals are 
emphasized and thus easily recognized by the network, making formants more 
identifiable, and also has the effect of canceling out noise.  The center surround function 
in Figure 3 below shows the relationship between the distance from a particular band and 
the multiplying factor.   
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Figure 3: Plot of Center Surround Function 
 
3.3  High-Energy Cut-off Function 
  
One difficulty in speech recognition is the variability of different speakers.  Besides the 
obvious accentual variations of different people, the volume of speech is one example.  
People, not being robots, vary in their volume when they speak, with some generally loud 
and others soft.  But the problem arises when an individual speaker talks loud.  As speech 
becomes louder, the frequency distribution seen by the neural computer becomes wider 
and wider, hence making it hard to discern the formants of a particular phoneme.  The 
neural computer is uncertain how to respond to that sound.   
 
To deal with loud inputs, a set of neurons was implemented.  A logarithmic relation 
between the output functions of a neuron and its input could avoid the problems caused 
by loud speakers by allowing for quick growth when volume is low and inhibiting the 
growth when the volume becomes higher.  However, the output functions of the neurons 
in the NP-4 neural computer are linearly related to their inputs.  Hence the high-energy 
cut-off layer was implemented at two different points to imitate the logarithmic curve.  
This layer examines the output from the center surround layer and inhibits it as it reaches 
a certain cut-off threshold.  The relationship between the input and the output of the high-
energy cut-off block is shown in Figure 4 below: 
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Figure 4: Logarithmic growth of the algorithm 
 
3.4  Inverse Layer 
 
 The inverse layer, created as a safety check for recognizing phonemes, has a 
rather simple function.  The inverse neurons of the inverse layers act as an inverter of the 
input to the network.  The outputs from the center surround function are routed into 
synapses that have negative weights.  The function curve looks exactly like the center 
surround function curve, except it is inverted.  Thus these inverse neurons are always 
firing, and are suppressed only when the output of the input neurons rises.  The output of 
these inverse neurons is in turn connected to the output layer negatively, thus inverting 
the input signal twice, creating a fuzzy AND function.  The inverse function curve is 
shown in Figure 5 below: 
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Figure 5: Inverse function   
 

The inverse neuron inverse the incoming signals, making it fire constantly when no input 
signal is present. 

 
Figure 6 below shows an example of how the inverse neurons are connected from input 
to the output neurons: 
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Figure 6: Example showing the operation of the inverse neurons 
 
3.5  Mutual Inhibition 
   
Mutual inhibition is set up in such a way that the outputs of each output neuron are routed 
into every other neuron, including itself.  It is used to select the strongest firing output 
neuron.  All output neurons are set such that they excite themselves but strongly inhibit 
the other output neurons.  This setup enables the stronger neuron to fire more frequently 
while repressing the other neurons.  Eventually only one neuron will produce output from 
the set of neurons that are mutually inhibited.  
 
The Pseudo-code implementation describing this function is given below: 

for (i = 0; i < n; i++) {
if (i = current_neuron) {

excite;
} else {

inhibit;
}
}
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3.6  Output Layer 
 
There are two different ways to train the output neurons.  One is taking the maximum 
point of each time slice, and the other is taking the average of all the points in each time 
slice.  These two methods are considered below. 
 
3.6.1  Maximum point method 
 
The training algorithm is a one-shot training, meaning the output neuron is trained only 
once when the sample is presented to the network; no other training for that neuron is 
necessary.  As only one neuron is trained at a time, several training must be done in order 
to set several output neurons.  The activity of both the input neurons and the inverse 
neurons are sampled at 2 ms intervals during the time the sample is presented to the 
network.  Since there are 16 inputs from the cochlea, there are 16 input neurons, and for 
each input neuron i, the sample data is cut into several time slices.  This means that the 
sample points are divided into several time slices Sn.  Within each time slice for every 
input neuron, the maximum point Mi,n is found, which effectively leaves one data point in 
each time slices.   
 
Next, the maximum points of each input neuron are totaled.  This is done for every time 
slice in order to find and compute the slice with the most activity.  Once the maximum 
slice is found, the input neurons are positively connected to the output neurons using the 
data point within the maximum slice to compute the synaptic weights.  The exact number 
of output neurons to be set can be varied, but four connections seem to work best.  The 
synaptic weights for the connections between the input neurons and the output neurons 
are based on the percentage of the activity of the particular neuron to the overall activity 
during the maximal time slice.  These synaptic weights are automatically set immediately 
after the training. 
 
The synaptic weights connecting the inverse neurons to the output neurons are set such 
that the value of weight is equal to the sum of weights connecting the input neurons to the 
output neurons.  This is shown as 
 

σk = ∑σi, 
 
where σk is the synaptic weight connecting the inverse neurons and σi is the synaptic 
weight connecting the output neurons. 
 
All the inverse neurons are connected to the output neurons at this same value.  This 
prevents the output neurons from responding if the input signals that were present during 
the training are missing.   
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3.6.2  Average point method 
 
The only difference between the average point method and the maximum point method is 
in the choosing of data points for each time slice when reducing the number of sample 
points in each of them.  Unlike the maximum point method, which ignores all sample 
points except for the maximum point within each time slice, the average point method 
takes into account every sample point and averages them.  The rest of the method is the 
same, finding the maximal slice and computing the synaptic routine. 
 
3.7 Inhibition of the Weak Inputs 
 
After the synaptic weights are set positively between the input neurons and the output 
neurons, input neurons with input signals smaller than the firing-threshold are negatively 
set.  This prevents the neurons from responding to background noise.  The synaptic 
weights are set at an arbitrary value no bigger than 1. 
 
4. RESULTS 
 
Both the training and testing samples were obtained from the TIMIT database of speech 
samples made jointly by Taxes Instrument and MIT.  For training and testing, samples of 
vowel sounds “ah,” “ee,” and “oh” were used.  They were chosen because of the 
differences between “ah” and “ee” and the similarities between “ah” and “oh”. 
 
Several series of test were carried out using the database.  First, the network built was 
tested to find the most effective number of synapses that connect the input neurons to the 
output neurons.  This was done by choosing one particular phoneme and training 12 
neurons to different representations of that particular phoneme sound from the TIMIT 
database.  Then all 16 synaptic weights connecting the input neurons to the output 
neurons were set and their responses tested.  Next, the number of synapses set was 
reduced.   
 
However, the responses in input neurons made it obvious that only four synapses from 
the input neurons to the output neurons had to be set in order to identify the formants.  In 
most cases only four bands constituted the core frequencies and the rest were not needed.  
Performance-wise, the network’s response was better when only four synapses were set, 
since setting more synapses made the neurons more susceptible to background noise. 
 
4.1 Results for Maximum Point Method 
 
Next, the neurons were trained with the maximum point method and tested, both with and 
without the inhibition of weak inputs.  The results are displayed in a confusion matrix.  
The horizontal represents the sounds responded, and the vertical represents the sounds 
presented.  The main diagonal represents the correct responses, and the rest represent 
unwanted responses.  Therefore the closer the entries in the main diagonal are to 100 % 
and the closer the entries in the rest are to 0%, the better.  The columns and rows do not 
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necessarily add up to 100%, since more than one neuron fired at times.  The testing 
without the inhibition of weak inputs produced the results shown in Table 1: 
 

 /iy/ /aa/ /ow/ 

/iy/ 80% 10% 0% 

/aa/ 30% 80% 30% 

/ow/ 0% 20% 80% 

 
Table 1: Confusion matrix using the maximum point method without the inhibition of weak inputs. 

 
Table 2 shows the results obtained with inhibition of weak inputs: 
 

 /iy/ /aa/ /ow/ 

/iy/ 80% 10% 0% 

/aa/ 30% 80% 30% 

/ow/ 0% 20% 80% 

 
Table 2: Confusion matrix using the maximum point method with the inhibition of weak inputs. 

 
As the results show, inhibiting the weak inputs had little effect on the response of each 
neuron.  The result is not very satisfying. 
 
4.2 Results for Average Point Method 
 
Finally, the neurons were trained with the average point method and tested.  Again, they 
are displayed using the confusion matrix.  Table 3 shows the results obtained without 
using the inhibition of weak inputs: 
 

 /iy/ /aa/ /ow/ 

/iy/ 90% 0% 0% 

/aa/ 22% 88% 22% 

/ow/ 0% 10% 100% 

 
Table 3: Confusion matrix using the maximum point method without the inhibition of weak inputs. 
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Table 4 gives the results obtained using the inhibition of weak inputs: 
 

 /iy/ /aa/ /ow/ 

/iy/ 90% 0% 0% 

/aa/ 22% 88% 22% 

/ow/ 0% 10% 100% 

 
Table 4: Confusion matrix using the maximum point method with the inhibition of weak inputs. 

 
Neurons trained with the average point method produced a better result than the neurons 
trained with the maximum point method.  The reason is that the inputs do not consist of 
one maximal point; in many cases, the inputs consisted of two maximal points.  Thus the 
input does not look like one mountaintop, but rather like two, with a drop in between the 
maximal points.   The maximum point method does not take this into account, as it 
searches only for the maximum point among the sample points within that time slice.  
Because the average point method does take it into account, it more accurately reflects 
the slope of the curve. 
 
Also, in neither case did the inhibition of weak inputs make much difference. However, 
since the testing sounds were obtained from the TIMIT database, background noise or the 
noise signal in the cochlea was not significant enough to alter the results.  If this 
algorithm is to be used in a real-time, real-world situation, where there is significant 
background noise, this function will inhibit those noises and prevent the trained neurons 
from responding to the wrong phonemes.  
 
5. DISCUSSION AND CONCLUSIONS 
 
This project has been quite successful.  Despite many difficulties trying to recover old 
files and several crashes of the operating system, the results seem promising.  They show 
that the neural network is currently capable of supporting all steady state phoneme 
recognition.  The neurons were not only tested against the sounds they were trained for, 
but they were also tested with sounds they were not trained with, in other words, their 
negative responses.  Though the number of testing sounds were quite limited, 
nevertheless there were enough to see the overall response of the network and it turned 
out to be much acceptable.  
 
However, this algorithm does not seem very promising if extended beyond phoneme 
recognition, especially in real-time speech recognition.  The overlapping of frequency 
bands between different sounds could create confusion for the network.  Thus in order to 
further improve the performance of the network, a thought on third algorithm was raised.  
Instead of finding the time slice with the most activity, the maximum point of each 
frequency band could be found and the time constants could be set such that the incoming 
signals are passed through the synapses connecting to the output neuron synchronously.  
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This seemed possible to better the performance but due to time limitations this algorithm 
was not implemented.  
 
6.  RECOMMENDATIONS 
 
Further examination of the vowel sounds and the preprocessing stage would be useful.  
This research found that, depending on the preprocessing stage - the center surround 
function in particular - the result could vary significantly.   
 
Furthermore, the diphones could be taken into account.  Since they are more complicated 
than the phonemes, additional functions may be needed.   The algorithm seems quite 
promising for the phonemes, but extending it to diphones might prove not as easy. 
 
In addition, as for day-to-day recommendation, all source files should be backed up at all 
times. Even when working on the program XPHYS on the digital host, it is recommended 
that the user save the project periodically since the Venix operating system could crash at 
any time. Also, the cochlea should be reset before training or testing, as it becomes 
unstable and gives erroneous results if left on for few hours.  
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