Background

- CHOP initiated project
 • Effects of exercise on bone-density
 • Study of pre-teens suggests correlation

- Other gauges of activity
 • Surveys are unreliable
 • Force plates impractical

- Peak force on foot is of particular interest for researchers
Solution-Pediatric Dynamometer

- In-shoe device to measure force
- Measure force using PVDF sensors
- Store data for subsequent analysis
Design of the PD

Finished
• Electronics and programming

Unfinished
• Integrated design of PD

Requirements for the design:
• Accurately measure force within 5%
• Be inconspicuous to the user
• Inexpensive and easy to produce
Basics of the PD Design

Mechanical Stress → Proportional Tensile Strain
Strain → Proportional Polarization
Polarization → Proportional Charge

Observing the generated voltage allows us to determine an unknown mechanical stress.
Potential Ideas
Testing

Periodic Motor
• Motion simulates walking
• Weight and foot simulate force

Scale
• Measure applied force, voltage
• Create sporadic forces

(above) A simulation used to test designs.

(left) Scale used to measure applied force on design
Design Results

General design established!

- uses “bridge” design
- accuracy
- comfort
Future Work

Modeling techniques to optimize design

- Width of steel
- Height of Supports
- Elastomer Stiffness
- Placement of PVDF
- Support Material
- Size of PVDF
Summary

• CHOP: Method needed to study bone growth and development of children.

• Conclusions can be drawn from an analysis of physical activity.

• Designs were tested throughout the summer research.

• Bridge-like design works best, but not accurate enough.

• Future work needs to optimize design, material properties.
Acknowledgements

Dr. Jay Zemel, ESE
Dr. Babette Zemel, CHOP
Dr. Jan Van der Spiegel, ESE
David Joffe
RCA Lab, Dr. Santiago’s Lab
SUNFEST 2007
University of Pennsylvania
National Science Foundation

