
 157

SPARSE CANTOR RING ANTENNA ARRAYS WITH NON-
UNIFORM ELEMENT SPACING 

 
Frederick U. Diaz, University of Pennsylvania (Electrical Engineering) 

NSF-AMP Undergraduate Research Program 
Advisors: Dr. Dwight L. Jaggard and Aaron D. Jaggard 

 
 

ABSTRACT 
 

This research project is based on previous work done by Dwight L. Jaggard and 
Aaron D. Jaggard on fractal ring arrays. We utilize fractals in the fabrication of a class of 
Cantor ring arrays. Fractal descriptors such as dimension, stage of growth, and lacunarity 
are applied in designing and characterizing these Cantor rings. Using the continuous 
arrays developed by Jaggard and Jaggard as a point of reference, we examine the design 
of analogous discrete arrays. We examine various ways of periodically and randomly 
thinning and building up these arrays azimuthally. The arrays are compared to their 
periodic and random counterparts as well as the continuous case to evaluate performance. 
Mainbeam quality, sidelobe level, and visible range are used to rate the arrays. The 
Cantor ring arrays and the corresponding array factors are simulated using programs 
developed in MATLAB. Our goals include developing fractal arrays that have low 
sidelobes comparable to those of periodic arrays while maintaining the robustness of 
random arrays. We aim for superior fractal performance at an equal number of elements 
as the periodic and random cases, as well as comparable performance using fewer 
elements. 
 
 
1. INTRODUCTION 
 
1.1 Antenna Arrays 
 

While single antenna elements radiate signals in a broad distribution pattern, 
antenna arrays manipulate and concentrate signals in a given direction. The radiation 
pattern of an array is the cumulative effect of constructive and deconstructive interference 
among the individual antenna elements. The result is usually a single mainbeam, the 
region of greatest cumulative constructive interference, surrounded by numerous side 
beams or sidelobes of varying degrees of constructive and deconstructive interference. 
An example of the far field radiation of an array, calculated as the Array Factor, is given 
in Figure 1. An ideal array would result in a radiated field that looks like an upside down 
“T.” The mainbeam would be a single untapered, undistorted beam. The energy 
distribution among the sidelobes would be even. High sidelobes are brought down while 
low sidelobes are brought up. The radiation pattern resulting from an antenna array with 
non-uniform distribution is called point-to-point or preferred coverage radiation. A single 
antenna element would be used in broadcasting applications such as television networks 
or radio stations where it is favorable to have a signal with as much coverage as possible. 
Point-to-point signals are desirable for scanning applications such as those used in air 



 158

traffic control systems or medical imaging devices. In these systems the ability to 
distinguish one point from another is vital. Point-to-point signals are also desired when 
the information being sent is private. The radiation characteristics of an antenna or an 
array are the same when sending or receiving a signal. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 1: Arrays produce radiation patterns with a mainbeam and many sidelobes. 
 
1.2 Fractal Electromagnetics 
 

Antenna arrays are usually created by distributing elements over a given area, 
either randomly or along a periodic lattice. Other arrays are periodic arrays that are 
periodically randomly thinned. Periodic arrays are characterized by low sidelobes and 
narrow visible range. Visible range refers to the maximum wavelength and corresponding 
minimum frequency at which a given array operates. Random arrays are characterized by 
high sidelobes and robustness in terms of element failure and element positioning. 

 
Recently, fractal geometry has been incorporated into the design of arrays as part 

of the research area denoted fractal electrodynamics. The motivation behind fractal 
arrays is to combine the low sidelobes characteristic of periodic arrays with the 
robustness characteristic of random arrays. This goal is pursued through random fractal 
patterns. 
 
1.3 Jaggard and Jaggard’s Fractal Ring Arrays 

 
This research project follows up on prior work done on fractal ring arrays [1], 

cantor ring arrays [2], and cantor ring diffractals [3]. Specifically, this project continues 
the study of discrete Cantor ring arrays. We use their findings on the continuous 
infinitesimal width Cantor ring array derived from the Cantor set with the following 

Array Factor: 
Side View 

Mainbeam 

Sidelobes 

≈ wavelength



 159

fractal descriptors: dimension = 9/10, stage = 2, number of gaps = 3, lacunarity = 
37/1000. This continuous array serves as a point of reference and departure. We examine 
the effects of the number and arrangement of antenna elements on the array’s radiated 
field. We explore different ways of thinning the arrays and evaluating their performance. 
The desired qualities are a round main beam with little or no degradation, low sidelobes, 
a large visible range, and coherence with the continuous case. 
 
2. FRACTALS AND FRACTAL DESCRIPTORS 
 
2.1 Background 
 

While Euclidean geometry is over two thousand years old, fractal geometry is 
relatively new. In the mid-1970s, B.B. Mandelbrot introduced and coined the term fractal 
to describe structures often referred to as spiky, variegated, or ramified. Such irregular 
structures are often difficult to describe using traditional Euclidean objects. The term 
fractal comes from the Latin fractus which means broken and refers to irregular 
fragments. Fractals make it easy to describe complex objects such as galaxies, stock 
market fluctuations, and tree branching. In the words of Mandelbrot, “Clouds are not 
spheres, mountains are not cones, coastlines are not circles and bark is not smooth, nor 
does lightning travel in a straight line” [4]. 
 

A loose definition of a fractal is an object whose parts are similar to the whole in 
some way. This similarity can be exact and mathematical, or it can be statistical and 
similar over the mean. Fractals are invariant under change of scale and invariant under 
displacement [5]. This property, referred to as self-similarity, is the calling card of 
fractals. Figure 2 provides an example of self-similarity. As we repeatedly magnify the 
curve, we find that each subsection is composed of increasingly fine structures. This 
rescaled jaggedness is similar, at least in the mean, to previous and subsequent stages of 
magnification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Magnifying this fractal curve repeatedly reveals increasingly fine structure. 
Each magnified portion is similar to the original structure, at least in the mean.[5] 
Fractals exhibit structure on all scales. Their self-similarity suggests that they can be 
generated through iterative or recursive means. Figure 3 shows the formation of a 

STATISTICAL 
SELF-SIMILARITY 

x 5 x 5 



 160

mathematical fractal known as the Triadic Cantor bar, or middle thirds Cantor bar. 
Performing repeated excising operations creates this fractal. We begin with the unit 
interval, given nonzero height to aid in visualization. Taking away the middle third from 
the unit interval results in the two intervals of the second row. Removing the middle 
thirds of the remaining two intervals results in the bars of the third row. Continuing this 
process an infinite number of times gives us the fractal Cantor set. In generating this 
fractal, each iteration represents a stage of growth. We denote the initial interval as the 
Stage 0 Cantor Bar. Practical fractals are self-similar over a limited range of 
magnifications. These bound fractals are more appropriately referred to as prefractals. 
However we shall still refer to them and their characteristics as fractal. 
 
2.2 Fractal Dimension 
 

From the above discussion and figure, its apparent that our normal concept of 
dimension needs to be revisited and redefined to accommodate fractals. It seems as 
though our fractal structures take up more space than their Euclidean allocation. A 
measure of the roughness and fragmentation of fractals is defined as the fractal 
dimension, denoted here as D. Unlike Euclidean dimension d, D is not restricted to 
integer values. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 [5]: The Triadic Cantor bar is generated by performing repeated excising 
operations on existing intervals. 
 
 

Our concept of dimension and its extension to fractals can be understood by the 
following heuristic argument [5]. Consider the measurement of the line segment with 
length L shown at the top of Figure 4. If we use a one-dimensional yardstick of length å, 
the total number N of yardsticks contained in the line segment is simply 

 
 

(1) 
( ) .

1







=
ε

ε L
N

MATHEMATICAL 
SELF-SIMILARITY 



 161

 
Similarly, consider the measurement of the area A (= L2) of the square shown in the 
middle of Figure 4. If we use a two-dimensional square yardstick of side å, the total 
number N of yardsticks contained in the square is  
 
 

(2) 
 

 
Likewise, consider the measurement of the volume V (= L3) of the cube shown at the 
bottom of Figure 4. If we use a three-dimensional cubical yardstick of side å, the total 
number N of yardsticks contained in the cube is 
 

(3) 
 
 

In each of the relations (1)-(3), the exponent represents the Euclidean dimension d of the 
object under consideration. 
 

This concept of dimension can be expanded by defining a generalized fractal 
dimension D through the relation of yardstick size å and number of yardsticks N 
contained in an arbitrary object as 

 
(4) 

 
where the appropriate constant C is dependent on the Euclidean dimension in which the 
object is embedded. D becomes d for simple Euclidean objects where the dimension is an 
integer. Rearranging the expression in (4) yields the desired dimension directly as 
 
 

(5) 
 
 
The fractal dimension definition of (5), which is only one of many fractal 

dimensions defined depending on application, is the basis for the disk covering method or 
the box counting method. This dimension is known as the similarity dimension. 

 

( ) .
2







=
ε

ε L
N

( ) ,DCN −≡ εε

( )[ ]
( )[ ]

( )[ ] [ ]
( )[ ]

( )[ ]
( )[ ]ε

ε
ε

ε
ε
ε

ε 1ln
ln

1ln
lnln

1ln
ln

0lim

NCN
d

Nd
D CONSTANTD  →

−
 →≡ →

( )N
L

ε
ε

=






3

.



 162

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Use of yardstick to obtain the dimension of Euclidean objects. Here N is the 
number of yardstick lengths å in each object of side L. 

 
At each stage of growth in the construction of a fractal, the dimension can be 

calculated by using the appropriately scaled yardstick. Lets consider the Stage 1 triadic 
Cantor bar (second row) of Figure 3. The length L of the interval, which remains the 
same at every stage, is 1. N is equal to the number of bars, while å is equal to the size of 
each bar relative to the size of the entire interval, 2 and 1/3 respectively. Using (5), we 
obtain 

( )
( )

6309.0
3ln

2ln
==D  

 
Applying (5) to Stages 2 and 3, with å = 1/9 and 1/27 respectively, gives us 
 

( )
( )

( )
( )

( )
( ) 6309.0
3ln
2ln

3ln
2ln

9ln
4ln

2
2

2

====DStage  

 
( )

( )
( )
( )

( )
( ) 6309.0
3ln
2ln

3ln
2ln

27ln
8ln

3
3

3

===== DDStage  

d = 1 

L 

L 

L 

ε

ε

ε

( )
1






=

ε
ε L

N

( )
2






=

ε
ε L

N

( )
3






=

ε
ε L

N

GENERAL RELATION ( )
dL

N 





=

ε
ε

d = 2 

d = 3 

OBJECT IN EUCLIDEAN 
DIMENSION D 

YARDSTICK 
OF SIZE å   

RELATION 



 163

2.3 Lacunarity 
 

Along with dimension and stage of growth, another important fractal descriptor is 
lacunarity. Mandelbrot defines lacunarity as a measure of the gappiness of a fractal [4]. 
Within a class of fractals, those with large gaps are described as having high lacunarity. 
Fractals whose gaps are more homogeneous throughout the structure, with less variation 
in gap size, are considered to have low lacunarity. In an illustration of a fractal, 
dimension may be regarded as the amount of ink used, while lacunarity can be considered 
in terms of the ink distribution over the area. Figure 5 [1] shows three Cantor bars with 
the same dimension, but different lacunarities. The top bar is relatively more 
homogeneous than the other two, while the bottom bar has the greatest difference in gap 
size. Each bar represents the Stage 2 case of a three-gap Cantor bar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 [1]: Three-gap Cantor bars at the second stage of growth with low, medium, and 
high lacunarity (top to bottom). 
 
3. PROBLEM STATEMENT AND SOLUTION 
 
3.1 Overview and Goals 
 

The prime motivation for this project is to continue the work done by Jaggard and 
Jaggard on Cantor ring arrays [1]. Jaggard and Jaggard analyzed various classes of 
continuous Cantor rings using values of dimension, stage of growth, lacunarity and 
number of gaps that they found to be “optimal” for array performance. They also 
explored the discrete case where elements were dispersed evenly along each ring with a 
linear density that was held constant for each ring. 
 

Our research further explores discrete arrays. The continuous arrays serve as both 
a point of departure and a point of reference, exhibiting the “best” possible performance 
we can expect from our discrete arrays as long as elements are restricted to the 
aforementioned Cantor rings. 
 

CANTOR BARS WITH DIFFERENT LACUNARITY 



 164

We explore ways of thinning the arrays from the continuous case as well as 
methods of building up arrays element by element. The processes of thinning and 
building up involve periodic and random means, as well as a combination of the two. By 
spacing the arrays in aperiodic ways, we expect to obtain better performance than the 
periodic case in at least one of two ways: similar performance with fewer elements, or 
better performance with the same number of elements. When comparing arrays, we 
examine mainbeam quality, sidelobe level, and visible range. Seemingly favorable arrays 
are compared not only to the evenly spaced arrays examined by Jaggard and Jaggard, but 
also to traditional periodic and random arrays that are analogous in total number of 
elements and area of element distribution. 
 
3.2 Preparations 
 

Prior to beginning the analysis of antenna arrays and radiation patterns, I spent 
five weeks learning about fractals, antennas, array factors, and MATLAB programming. I 
read Mandelbrot’s Fractal Geometry of Nature to gain an understanding and an intuitive 
feel for fractals and their properties. Weeks’ Antenna Engineering provided much of the 
background and mathematical theory on array factors. During and after reading these and 
many other articles and book chapters, I worked on writing MATLAB programs that 
generated Cantor rings, plotted antenna elements, and produced different perspectives of 
the resulting radiated field. My reading and programming were supplemented and 
clarified through meetings with Jaggard and Jaggard. 
 
3.3 Construction of Cantor Ring Arrays 
 

As shown in Figure 6 [1], Cantor ring arrays are obtained from analogous Cantor 
bars. We begin by generating a subset of the Cantor set C, in this case Stage 2 of the 
three-gap Cantor bar of Figure 6a. The Cantor bar is rotated about its midpoint, forming 
an aperture array whose annuli (rings) have widths corresponding to the Cantor set, 
Figure 6b. Thinning the rings in a manner that results in infinitesimal width rings at the 
center of each finite width annuli gives Figure 6c. These are further thinned azimuthally. 
We replace each continuous ring by discrete radiating elements, forming the desired 
discrete Cantor ring array of Figure 6d. 



 165

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 [1]: A discrete cantor ring array is derived from an analogous Cantor bar (a). 
The Cantor bar is rotated about its midpoint to form a Cantor ring array of finite width 
annuli (b). The annuli are replaced with infinitesimal width rings (c). These are in turn 
replaced with discrete radiating elements (d). 
 

For our purposes we attribute to a given discrete Cantor ring array the same 
dimension as its parent Cantor set C. The stage of growth is treated in the same manner as 
the Cantor bars. We measure lacunarity by the size of the outer gap width, denoted by α. 
Cantor rings are further described by the number of gaps, ngaps, in the Stage 1 
configuration.  
 

There are many proposed measures of lacunarity.  For this work we adapt the one 
suggested by Allain and Cloitre [6,7] and used by Jaggard and Jaggard [1]. In generating 
Cantor bars and corresponding Cantor rings, we work with ngaps ≥ 3. We restrict 
variations in gap width so that all the outer gaps, exempting a possible central gap, are the 
same size in the first stage of growth. For a given Cantor bar with a specified dimension 
and ngaps at Stage 1 there is a limited amount of space to distribute among the gaps. α, the 
width of the homologous outer gaps, can be varied within a given range. The space 
remaining after determining α for the outer gaps is given to the central gap. In this work 
α is measured in ten thousandths of the unit interval.  
 
3.4 Planar Arrays and Their Radiated Fields 
 

Figure 7 [1] shows the problem geometry of a discrete Cantor ring array. The 
discrete elements are placed in the x�-y� plane. The array factor, AF, which is a measure of 
the radiated field, is examined in the far field as a function of normalized spatial 
frequency fxa = xa/λr and fya = ya/λr where a is the distance of the element in the radial 

CONSTRUCTION OF CANTOR RING ARRAYS 

a. b.

d. c. 



 166

direction, 222 zyxr ++= is the observation distance from the origin and λ is the 
wavelength [1]. The array factor is given by 
 
 
 
 
 

 (6) 
 
where N = M = the number of elements, d is the element spacing, θ is the angle in the x-z 
plane between the antenna element and the observation point in the far- field, and φ is the 
angle in the y-z plane between the antenna element and the observation point in the far-
field. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: The array factor AF or radiated field is measured in the far-zone (r >> a, λ) as a 
function of normalized transverse spatial frequencies fxa and fya. 
 
3.5 Departure from Continuous Cantor Rings 
 

After completing MATLAB script to generate the Cantor rings, position antenna 
elements, and generate AF plots, we duplicated relevant results attained by Jaggard and 
Jaggard [1]. We generated plots for the continuous case and the discrete case with 
periodically spaced elements. These graphs provide a point of reference for our 
subsequent AF plots. Specifically, we concentrated on the class of Cantor rings with the 
following properties: D = 9/10, S = 2, α = 37/1000, ngaps = 3. For the discrete case with 
periodic spacing, the linear density was such that a ring of radius r = 1 had 130 elements. 
This array had 8 rings with a total of N = 556 elements. The elements were allocated as 
follows, starting with the innermost ring: 15, 29, 45, 59, 80, 94, 110, 124. From the AF 

,
1

0

1

0

sincos2sincos2

∑∑
−

=

−

=







−






−

=
N

n

M

m

dmidni

eeAF
φθ

λ
πφθ

λ
π

PROBLEM GEOMETRY 



 167

plots of the continuous case, we see that the maximum sidelobe level is –17 dB. For 
discrete cases we initially expect good arrays to have maximum sidelobes no lower than -
13 dB for infinite visible range. The periodic case has no sidelobes higher than –17 dB 
when the visible range is cut off at .21≈af ρ  

 
3.6 Azimuthal Element Configurations 
 

We examine three groups of azimuthal configurations, as shown in Figure 8. In all 
cases, we keep the total number of elements at 556 and maintain the same linear density 
for each ring. First, we reproduced the periodic case studied by Jaggard and Jaggard. 
Elements were spaced evenly along each ring, with placement starting at a random point 
to limit the effect of elements lining up. Such lining up of elements tends to cause high 
sidelobes along “preferred directions” perpendicular to the line of the elements. The 
second azimuthal configuration we examined is the random case, where each element is 
placed randomly within its ring. The third class is a group of semi-random or tethered 
arrays. We begin by dividing into equal intervals. The number of intervals in each ring 
corresponds to the number of elements to be placed in that ring. We then place one 
antenna element randomly within each space. We can tether the elements even tighter by 
restricting the randomness to be in a given range, for example the middle 3/4s or the 
middle 1/2 of each interval. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Different azimuthal configurations. 
 

We generate 10 to 20 trials for each case and note the mainbeam, high sidelobe 
levels, and visible range. We also consider how each class compares to one another and 
how each compares to the continuous case. Finally, we compare these arrays to 
equivalent periodic lattices and random disks. 
 
4. DISCUSSION AND CONCLUSIONS 
 
4.1 Array Factor of the Continuous Case 
 

The continuous case of our Cantor ring arrays yields an array factor with a 
maximum sidelobe level of –17 dB for any visible range. Because the array is composed 

Tethered Periodic Random 



 168

of concentric rings, the resulting array factor is a perfectly round mainbeam surrounded 
by radial radiation waves of varying power that extends to an infinite visible range. The 
power is distributed evenly in the azimuthal direction, as if, for each radial distance from 
the mainbeam, all the sidelobes are smeared evenly around the mainbeam. When viewed 
from above the array factor also resembles a set of concentric rings. High rings are 
located at .21,108−≈af ρ  Thinning the rings into discrete elements breaks up the 
“rings” of the array factor, resulting in random sidelobes. Higher linear densities result in 
creating rings farther from the mainbeam, while lower linear densities result in pushing 
the random sidelobe region closer to the mainbeam. We refer to the region of rings and 
the random sidelobe region as the region of fractal control and the random region, 
respectively. 
 
4.2 Fractal Array Results 
 

The periodic azimuthal configuration results in an average maximum sidelobe 
level of –13.5 dB, with fluctuations of up to ± 1 dB. These fluctuations occur in the 
random region. Within the fractal control region at this linear density, a visible range of 

f aρ ≈ 2 1 , the maximum sidelobe level stays at –17 dB. 
 
Randomizing the element configuration brings the average maximum sidelobe 

level down to -14.5 dB, with fluctuations of up to ± 1.5 dB. Fractal control over the 
sidelobes is barely noticeable. The rings of the Array Factor disappear, but the general 
heights of these regions still resemble those of the continuous case. This is expected 
because the random configuration, in effect, scatters the sidelobe power radially, while 
loosening its grip on azimuthal evenness.  

 
Tethering the antenna elements lowers the high sidelobes even further. We 

examine three cases of tethering with ranges 1, middle 3/4, and middle 1/2. For our 
arrays, a range of 1 is slightly better than a range of 1/2 with the best range falling in-
between. With the range restricted to the middle 3/4 of each ring section, our tethered 
arrays have an average maximum sidelobe level of –16.5 ± 1 dB over an infinite visible 
range. Much of the azimuthal fractal control over sidelobes is maintained, and combined 
with the radial redistribution resulting from the randomness. We notice that high rings, 
and high regions, are susceptible to higher sidelobes. However with an appropriate 
mixture of order and disorder, low sidelobes are brought up, while high sidelobes are 
brought down. Representative Array Factor graphs of the periodic and middle 3/4 
tethered cases are shown in Figure 9. 
 



 169

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: An improvement of 3 dB is gained by changing the azimuthal configuration 
from periodic to tethered. 
 
4.3 Comparison to Periodic Lattice and Random Disk 
 

A periodic lattice with N = 552 (24x23) has a very good mainbeam with low 
tapered sidelobes. However, as with all periodic lattices, the visible range is very narrow. 
A sidelobe threshold of –17 dB provides a visible range of f aρ ≈ 12 , while a threshold of 

–13 dB gives a visible range of f aρ ≈ 13.  Our cantor array with middle 3/4 range is 
superior in terms of visible range and robustness, while providing comparable mainbeam 
structure and sidelobe level. 
 

A random disk of 556 elements has an average maximum sidelobe level of –16.5 
± 1 dB, similar to that of our middle 3/4 range tethered case. However, the mainbeam 
tends to be highly degraded. Random sidelobes also pop up unpredictably. 
 
4.4 Overall Results and Conclusions 
  

We began this project with Cantor ring arrays that have periodic azimuthal 
spacing, progressed to random spacing, and then examined various tethered cases. Our 
middle 3/4 range tethered cases show an improvement of sidelobes –3 dB lower than 
those of periodic arrays. This translates to arrays with sidelobe power twice as low as our 
starting point. These arrays not only have lower sidelobe levels, but also have greater 
visible range and are far more robust. Our tapered arrays perform twice as well as the 
periodic arrays when using the same number of elements, but also have comparable 
performance with half as many elements. Practically, this means that we can now build 
an array that functions much better than before and can have up to half its elements fail. 
Or to save on cost, we can build a comparable array using half as many elements as 
before. 

Periodic 
N = 556 

Tethered 
(Range (3/4)2pi/n) 

N = 556 

-3 dB 



 170

 
5. RECOMMENDATIONS 
 

Further examination can be done with the tethered case to find out what the best 
range is. Our research shows that this optimal range falls between 1 and 1/2 of the space 
allotted to each element if the rings are divided into equal spaces equal to the number of 
elements in each ring. Tethering the antenna elements is analogous to saying that the 
elements have an underlying structure with short-range disorder - similar in concept to 
random fractals. This suggests that we may be able to arrange the antenna elements using 
fractals and random fractals in the azimuthal direction. 

 
We have also begun to look at tapered and inverse tapered arrays. The inverse 

tapering, in particular seems promising. It appears that by having a greater density of 
elements on the outer rings, we can push out the region of fractal control over sidelobes, 
effectively increasing visible range. 
 
6. ACKNOWLEDGEMENTS 
 

I would like to give foremost recognition to Dr. Dwight L. Jaggard for allowing 
me the privilege of working with him. His work spawned this project, and his guidance, 
teaching, and enthusiasm assured its success. Thank you for giving me insight into 
fractals, antennas, experimentation, and research. Thank you for considering this project, 
and my efforts, important and worthwhile. 
 

I would also like to thank Aaron Jaggard and Hector Dimas for their contributions 
in giving me direction and insight with my work. Aaron, thanks for going over my work, 
and thanks for delineating much of the theoretical, mathematical, and programming 
aspects of this project. Hector, thanks for being as lost as I was at times, and thanks for 
your major contributions to my MATLAB programming. 
 

I must acknowledge NSF – AMP for funding my research and allowing me to 
participate in this program. Thank you to Cora Ingrum and Donna Hampton for taking 
care of the program issues outside of experimentation. Your constant praise and 
encouragement was greatly appreciated. 
 

I would like to thank the coordinators and facilitators of Sunfest for allowing me 
to take part in their program. Dr. Van der Spiegel and Lois Clearfield, thank you for 
making it possible for me to participate in the various seminars and group meetings.  
 

Finally, thank you to the CETS people who handled the hundreds of papers of 
data generated during my research. Thanks to Bindu, Yale, and the other two girls whose 
names I cannot remember. Oh, and in case you were not aware, handling my papers 
happens to be your JOB. 
 



 171

7. REFERENCES 
 
1. D.L. Jaggard and A.D. Jaggard, “Fractal Ring Arrays,” to appear in Wave Motion 

(2000-2001) 
2. D.L. Jaggard and A.D. Jaggard, “Cantor Ring Arrays,” Mic. and Opt. Tech. Let., 19 

(1998) pp. 121-125 
3. A.D. Jaggard and D.L. Jaggard, “Cantor Ring Diffractals,” Opts. Comm., 158 (1998) 

pp. 141-148 
4. B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1983 
5. D.L. Jaggard, “On Fractal Electromagnetics,” Ch. 6 in Recent Advances in 

Electromagnetic Theory, pp. 183-224, Springer-Verlag, Berlin 1990 
6. C. Allain and M. Cloitre, “Characterizing the Lacunarity of Random and 

Deterministic Fractal Sets,” Phys. Rev. A 44, 3552-3558 (1991). 
7. A.D. Jaggard and D.L. Jaggard, “Scattering from Fractal Superlattices with Variable 

Lacunarity,” J. Opt. Soc. Am. A 15, 1626-1635 (1998). 
 
8. BIBLIOGRAPHY 
 
1. W.L. Weeks, Antenna Engineering, McGraw-Hill, New York, 1968, pp. 62-78 
2. MATLAB User’s Guide, Student Edition 
3. Ulaby and Fawwaz, Fundamentals of Applied Electromagnetics, Prentice Hall, New 

Jersey, 1999 
4. S.W. Lee, Antenna Handbook, Theory, Applications, & Design, Reinhold Company, 

New York, 1998 
 



 172

9. APPENDICES 
 
Appendix A: (MATLAB script used to generate Cantor sets, Cantor rings, and AF plots) 
 
%Cantor Set Generator 
%Array Factor Generator 
%af(2,214,37,214,70,214,37,214,0) 
 
%Input the Stage 
%Input the individual lengths of the Stage 1 intevals and gaps (Curds and Tremas) 
function 
af(Stage,CurdSize1,TremaSize1,CurdSize2,TremaSize2,CurdSize3,TremaSize3,... 
  
CurdSize4,TremaSize4,CurdSize5,TremaSize5,CurdSize6,TremaSize6,CurdSize7,Trema
Size7,... 
  CurdSize8,TremaSize8,CurdSize9,TremaSize9,CurdSize10); 
%**********************************************************************
************** 
%**********************************************************************
************** 
%Generates the Stage 1 Cantor Set based on the input parameters 
%Each if statement creates a curd or trema if its respective input parameters are given. 
%The program takes in the CurdSize and places it in the set, then it takes in the 
%TremaSize and places it an appropriate distance from the previous Curd. This continues 
%as long as there are input variables available. A zero input given to any trema 
%terminates the set generating at that point. 
 
%Stage 0 
if Stage == 0, 
  C_Set = [0 1]; 
  L = 1; 
  stage = 0; 
end 
 
%Stage 1 Generator 
if Stage >= 1, 
  %Curd1 
  Curd1 = [0 CurdSize1];         %create curd 
  S = Curd1;               %add the curd to the set 
  L = S(length(S));            %set length 
   
  if TremaSize1 ~= 0, 
   %Trema1 
   Trema1 = [L + TremaSize1];      %create trema 
   L = L + TremaSize1;         %change set length to account for trema 
   scaler = lcm(CurdSize1,TremaSize1); %scale factor fo r the set, this allows for 



 173

   %Curd2                %different sized curds and tremas 
   Curd2 = [L + CurdSize2];       %create curd 
   S = [S Trema1 Curd2];        %add curd to the set 
   L = L + CurdSize2;          %change set length to account for curd 
   scaler = lcm(scaler,CurdSize2);   %scale factor for the set 
    
   if TremaSize2 ~= 0, 
     %Trema2 
     Trema2=[L + TremaSize2]; 
     L = L + TremaSize2; 
     scaler = lcm(scaler,TremaSize2); 
     %Curd3 
     Curd3 = [L + CurdSize3]; 
     S = [S Trema2 Curd3]; 
     L = L + CurdSize3; 
     scaler = lcm(scaler,CurdSize3); 
      
     if TremaSize3 ~=0, 
      %Trema3 
      Trema3 = [L + TremaSize3]; 
      L = L + TremaSize3; 
      scaler = lcm(scaler,TremaSize3); 
      %Curd4 
      Curd4 = [L + CurdSize4]; 
      S = [S Trema3 Curd4]; 
      L = L + CurdSize4; 
      scaler = lcm(scaler,CurdSize4); 
       
      if TremaSize4 ~= 0, 
        %Trema4 
        Trema4 = [L + TremaSize4]; 
        L = L + TremaSize4; 
        scaler = lcm(scaler,TremaSize4); 
        %Curd5 
        Curd5 = [L + CurdSize5]; 
        S = [S Trema4 Curd5]; 
        L = L + CurdSize5; 
        scaler = lcm(scaler,CurdSize5); 
         
        if TremaSize5 ~= 0, 
         %Trema5 
         Trema5 = [L + TremaSize5]; 
         L = L + TremaSize5; 
         scaler = lcm(scaler,TremaSize5); 
         %Curd6 
         Curd6=[L + CurdSize6]; 



 174

         S = [S Trema5 Curd6]; 
         L = L + CurdSize6; 
         scaler = lcm(scaler,CurdSize6); 
          
         if TremaSize6 ~=0, 
           %Trema6 
           Trema6 = [L + TremaSize6]; 
           L = L + TremaSize6; 
           scaler = lcm(scaler,TremaSize6); 
           %Curd7 
           Curd7 = [L + CurdSize7]; 
           S = [S Trema6 Curd7]; 
           L = L + CurdSize7; 
           scaler = lcm(scaler,CurdSize7); 
            
           if TremaSize7 ~= 0, 
            %Trema7 
            Trema7 = [L + TremaSize7]; 
            L = L + TremaSize7; 
            scaler = lcm(scaler,TremaSize7); 
            %Curd8 
            Curd8 = [L + CurdSize8]; 
            S = [S Trema7 Curd8]; 
            L = L + CurdSize8; 
            scaler = lcm(scaler,CurdSize8); 
             
            if TremaSize8 ~= 0, 
              %Trema8 
              Trema8 = [L + TremaSize8]; 
              L = L + TremaSize8; 
              scaler = lcm(scaler,TremaSize8); 
              %Curd9 
              Curd9 = [L + CurdSize9]; 
              S = [S Trema8 Curd9]; 
              L = L + CurdSize9; 
              scaler = lcm(scaler,CurdSize9); 
               
              if TremaSize9 ~= 0, 
               %Trema9 
               Trema9 = [L + TremaSize9]; 
               L = L + TremaSize9; 
               scaler = lcm(scaler,TremaSize9); 
               %Curd10 
               Curd10 = [L + CurdSize10]; 
               S = [S Trema9 Curd10]; 
               L = L + CurdSize10; 



 175

               scaler = lcm(scaler,CurdSize10); 
                
              end 
            end 
           end 
         end 
        end 
      end 
     end 
   end 
  end 
   
  %Stage 1 
  C_Set = S; 
  %S; 
  %L; 
  stage = 1; 
end 
%**********************************************************************
************** 
%**********************************************************************
************** 
%This part of the program generates Cantor Sets at Stage 2 or higher. It takes the set 
%created above and generates another stage by scaling up (not down!). The scaler and 
%scaler_temp variables facilitate this upward scaling. 
 
if Stage > 1, 
  stage=2; 
  scaler_temp = scaler; 
   
  while stage <= Stage,          %generate stages 
   C_Set = S * gcd(scaler,CurdSize1); 
   if TremaSize1 ~= 0, 
     shift = C_Set(length(C_Set)) + (gcd(scaler_temp,TremaSize1))*S(length(S)); 
     C_Set = [C_Set (S * gcd(scaler_temp,CurdSize2) + shift)]; 
     if TremaSize2 ~= 0, 
      shift = C_Set(length(C_Set)) + (gcd(scaler_temp,TremaSize2))*S(length(S)); 
      C_Set = [C_Set (S * gcd(scaler_temp,CurdSize3) + shift)]; 
      if TremaSize3 ~=0, 
        shift = C_Set(length(C_Set)) + (gcd(scaler_temp,TremaSize3))... 
         *S(length(S)); 
        C_Set = [C_Set (S * gcd(scaler_temp,CurdSize4) + shift)]; 
        if TremaSize4 ~= 0, 
         shift = C_Set(length(C_Set)) + (gcd(scaler_temp,TremaSize4))... 
           *S(length(S)); 
         C_Set = [C_Set (S * gcd(scaler_temp,CurdSize5) + shift)]; 



 176

         if TremaSize5 ~= 0, 
           shift = C_Set(length(C_Set)) + (gcd(scaler_temp,TremaSize5))... 
            *S(length(S)); 
           C_Set = [C_Set (S * gcd(scaler_temp,CurdSize6) + shift)]; 
           if TremaSize6 ~=0, 
            shift = C_Set(length(C_Set)) + (gcd(scaler_temp,TremaSize6))... 
              *S(length(S)); 
            C_Set = [C_Set (S * gcd(scaler_temp,CurdSize7) + shift)]; 
            if TremaSize7 ~= 0, 
              shift = C_Set(length(C_Set)) + (gcd(scaler_temp,TremaSize7))... 
               *S(length(S)); 
              C_Set = [C_Set (S * gcd(scaler_temp,CurdSize8) + shift)]; 
              if TremaSize8 ~= 0, 
               shift = C_Set(length(C_Set)) + (gcd(scaler_temp,... 
                 TremaSize8))*S(length(S)); 
               C_Set = [C_Set (S * gcd(scaler_temp,CurdSize9) + shift)]; 
               if TremaSize9 ~= 0, 
                 shift = C_Set(length(C_Set)) + (gcd(scaler_temp,... 
                  TremaSize9))*S(length(S)); 
                 C_Set = [C_Set (S * gcd(scaler_temp,CurdSize10) ... 
                    + shift)]; 
               end 
              end 
            end 
           end 
         end 
        end 
      end 
     end 
   end    
    
   S = C_Set; 
   scaler_temp = scaler_temp * scaler; 
   L = C_Set(length(C_Set)); 
   stage = stage + 1; 
  end 
end 
 
%Stage N 
%C_Set; 
%L; 
%**********************************************************************
************** 
%**********************************************************************
************** 
%Generate the set of Radii from the midpoints of the Cantor Set Tremas 



 177

r=1; 
while r < length(C_Set), 
  Radius((r + 1) / 2) = (C_Set(r) + C_Set(r+1)) / 2; 
  r = r + 2; 
end 
 
Radius; 
%**********************************************************************
************** 
%**********************************************************************
************** 
%Generate a list of the Points and Midpoints of the Cantor Set 
ii=1; 
radius_w_zeros=[]; 
while ii <= length(C_Set), 
  if mod(ii,2) ~= 0, 
   radius_w_zeros = [radius_w_zeros Radius((ii + 1) / 2)]; 
   ii = ii + 1; 
  elseif mod(ii,2) == 0, 
   radius_w_zeros = [radius_w_zeros 0]; 
   ii = ii + 1; 
  end 
end 
 
shifted_unit_radius=[]; 
for ii = 1:length(radius_w_zeros), 
  if radius_w_zeros(ii) == 0, 
   shifted_unit_radius(ii) = 0; 
  else 
   shifted_unit_radius(ii) = 2 * (radius_w_zeros(ii)/L) - 1; 
  end 
end 
 
unit_set = C_Set / L; 
shifted_unit_set = 2 * unit_set - 1; 
unit_radius = radius_w_zeros / L; 
%shifted_unit_radius; 
 
Cantor_Points = [C_Set', unit_set', shifted_unit_set', ... 
   radius_w_zeros', unit_radius', shifted_unit_radius'] 
%C_Set; 
%shifted_unit_set; 
%shifted_unit_radius 
%**********************************************************************
************* 



 178

%**********************************************************************
************* 
%Plot the Cantor Set and the Midpoints 
figure(1); 
y=0; 
plot(C_Set / L,y,'k.'); 
grid on; 
hold on; 
plot(Radius / L,y,'r.'); 
title(['Cantor Set and Midpoints, Stage ', num2str(Stage)]); 
hold off; 
axis('square'); 
%**********************************************************************
************** 
%**********************************************************************
************** 
%Half the Cantor Set so that its midpoint is at Zero 
Half_C_Set = C_Set; 
Half_C_Set(1:(length(Half_C_Set)/2)) = []; 
Half_unit_set = unit_set; 
Half_unit_set(1:(length(Half_unit_set)/2)) = []; 
Half_shifted_unit_set = shifted_unit_set; 
Half_shifted_unit_set(1:(length(Half_shifted_unit_set)/2)) = []; 
 
Half_radius_w_zeros = radius_w_zeros; 
Half_radius_w_zeros(1:(length(Half_radius_w_zeros)/2)) = []; 
Half_unit_radius = unit_radius; 
Half_unit_radius(1:(length(Half_unit_radius)/2)) = []; 
Half_shifted_unit_radius = shifted_unit_radius; 
Half_shifted_unit_radius(1:(length(Half_shifted_unit_radius)/2)) = []; 
 
Shifted_Set = [Half_C_Set', Half_unit_set', Half_shifted_unit_set', ... 
   Half_radius_w_zeros', Half_unit_radius', Half_shifted_unit_radius'] 
 
ii = 1; 
while ii <= length(Half_shifted_unit_radius), 
  if Half_shifted_unit_radius(ii) == 0, 
   Half_shifted_unit_radius(ii) = []; 
   ii = ii + 1; 
  else 
   ii = ii + 1; 
  end 
end 
 
 
%Half_C_Set; 



 179

%Half_shifted_unit_set; 
Array_Radius = Half_shifted_unit_radius; 
%Array_Radius = [enter desired radius] 
%**********************************************************************
************** 
%**********************************************************************
************** 
%Rings corresponding to Cantor Set 
figure(2); 
theta = 0:0.001:2*pi; 
ii=1; 
while ii <= length(Half_shifted_unit_set), 
  plot((Half_shifted_unit_set(ii)*cos(theta))/... 
      (Half_shifted_unit_set(length(Half_shifted_unit_set))), ... 
    (Half_shifted_unit_set(ii)*sin(theta))/... 
      (Half_shifted_unit_set(length(Half_shifted_unit_set))),'k-'); 
  ii = ii + 1; 
  hold on; 
end 
%Different ways to plot antenna elements along midpoints of Cantor Set, Use only one at 
a time 
%**********************************************************************
************** 
%**********************************************************************
************** 
%%Periodic Lattice 
%x=[]; 
%y=[]; 
%x_length=24; 
%y_length=23; 
 
%x_increment = linspace(0, x_length, x_length); 
%y_increment = linspace(0, y_length, y_length); 
 
%for ii = 1:x_length, 
%  for jj = 1:y_length, 
%   x = [x x_increment(ii)]; 
%   y = [y y_increment(jj)]; 
%  end 
%end 
 
%x = x*0.0720; 
%y = y*0.0720; 
 
%N = x_length * y_length; 
%Lattice_Area = x(length(x)) * y(length(y)) 



 180

%Cantor_Area = pi * (Array_Radius(length(Array_Radius)))^2 
 
%x = x - x(length(x))/2; 
%y = y - y(length(y))/2; 
%**********************************************************************
************** 
%**********************************************************************
************** 
%Random Disk 
%x=[]; 
%y=[]; 
%N = 556; 
%ii = 1; 
%while ii <= N, 
%  x_gen = Array_Radius(length(Array_Radius)) * rand(1); 
%  y_gen = Array_Radius(length(Array_Radius)) * rand(1); 
%  if (sqrt(x_gen^2 + y_gen^2)) <= Array_Radius(length(Array_Radius)), 
%   x = [x x_gen]; 
%   y = [y y_gen]; 
%   ii = ii + 1; 
%  end 
%end 
 
%x_quadrant = rand(size(x)); 
%for ii = 1:N, 
%  if x_quadrant(ii) < 0.5, 
%   x(ii) = -x(ii); 
%  end 
%end 
%y_quadrant = rand(size(y)); 
%for ii = 1:N, 
%  if y_quadrant(ii) < 0.5, 
%   y(ii) = -y(ii); 
%  end 
%end 
%**********************************************************************
************** 
%**********************************************************************
************** 
%Linear Density the same for all radii of the Cantor Rings 
%ii=1; 
%N=0; 
%n=0; 
%radial_density_factor=0.295;       %used to determine N per ring 
%Elements_Per_Ring=[]; 
%x=[]; 



 181

%y=[]; 
%while ii <= length(Array_Radius), 
%  n = round(2*2*pi*Array_Radius(ii)/(2*radial_density_factor)+1); 
%  Elements_Per_Ring = [Elements_Per_Ring n-1]; 
%  N = N + n - 1; 
%  theta = linspace(0,2*pi,n) + rand(1); 
%  theta(1) = []; 
%  x = [x [Array_Radius(ii) * cos(theta)]]; 
%  y = [y [Array_Radius(ii) * sin(theta)]]; 
%  ii = ii + 1; 
%end 
%                      %Display radii and elements per ring 
%Array_Radius_AND_Elements_Per_Ring = [Array_Radius' Elements_Per_Ring'] 
%**********************************************************************
************** 
%**********************************************************************
************** 
%Outer Radii have greater linear density than inner radii 
%ii=length(Array_Radius); 
%N=0; 
%n=0; 
%Elements_Per_Ring=[]; 
%x=[]; 
%y=[]; 
 
%radial_density_factor=0.0334; 
%RDFs = radial_density_factor; 
%density_scaler=1.2 
%exp_den_scaler=1 
%Linear_Density_r5=[]; 
%while ii >= 1, 
%  n = round(2*2*pi*Array_Radius(ii)/(2 * radial_density_factor)+1); 
%  Linear_Density_r5 = [Linear_Density_r5 (2*pi/radial_density_factor)]; 
%  radial_density_factor = radial_density_factor * (density_scaler^exp_den_scaler); 
%  RDFs = [RDFs radial_density_factor]; 
%  Elements_Per_Ring = [Elements_Per_Ring n-1]; 
%  N = N + n - 1; 
%  theta = linspace(0,2*pi,n) + rand(1); 
%  theta(1) = []; 
%  x = [x [Array_Radius(ii) * cos(theta)]]; 
%  y = [y [Array_Radius(ii) * sin(theta)]]; 
%  ii = ii - 1; 
%end 
 
%Rev_Array_Radius = []; 
%for ii = 1:length(Array_Radius), 



 182

%  Rev_Array_Radius(ii) = Array_Radius(length(Array_Radius) - ii + 1); 
%end 
%RDFs(length(RDFs))=[];           %Display radii, # elements, density 
%Radius_NumPerRing_Density = [Rev_Array_Radius' Elements_Per_Ring' 
Linear_Density_r5' RDFs'] 
%**********************************************************************
************** 
%**********************************************************************
************** 
%Specify N per ring, random placement within ring 
%n = [15 29 45 59 80 94 110 124];       %number of elements per ring 
%x=[]; 
%y=[]; 
% 
%for ii = 1:length(n), 
%  rand_theta = 2*pi*rand(ceil(sqrt(n(ii)))); 
%  for jj = 1:n(ii); 
%   x = [x [Array_Radius(ii) * cos(rand_theta(jj))]]; 
%   y = [y [Array_Radius(ii) * sin(rand_theta(jj))]]; 
%  end 
%end 
% 
%Radius_NumberElements = [Array_Radius' n'] 
%N = n(1) + n(2) + n(3) + n(4) + n(5) + n(6) + n(7) + n(8); 
%**********************************************************************
************** 
%**********************************************************************
************** 
%%Random placing within a given range 
%ii=1; 
%N=0; 
%n=0; 
%radial_density_factor=0.0485;       %used to determine N per ring 
%Elements_Per_Ring=[]; 
%x=[]; 
%y=[]; 
%while ii <= length(Array_Radius), 
%  n = round(2*2*pi*Array_Radius(ii)/(2*radial_density_factor)+1); 
%  Elements_Per_Ring = [Elements_Per_Ring n-1]; 
%  N = N + n - 1; 
%  theta = linspace(0,2*pi,n) + 2*pi*rand(1); 
%  theta(1) = []; 
%  range = 2*pi/(n - 1); 
% rand_theta = range*rand(ceil(sqrt(n))); 
%  for jj = 1:length(theta), 
%   theta(jj) = theta(jj) + rand_theta(jj); 



 183

%  end 
%  x = [x [Array_Radius(ii) * cos(theta)]]; 
%  y = [y [Array_Radius(ii) * sin(theta)]]; 
%  ii = ii + 1; 
%end 
%                      %Display radii and elements per ring 
%Array_Radius_AND_Elements_Per_Ring = [Array_Radius' Elements_Per_Ring'] 
%**********************************************************************
************** 
%**********************************************************************
************** 
%Input each linear density 
n = [15 29 45 59 80 94 110 124];       %number of elements per ring 
x=[]; 
y=[]; 
 
%r = 0.1158 
theta = linspace(0,2*pi,n(1) + 1) + 2*pi*rand(1); 
theta(1) = []; 
x = [x [Array_Radius(1) * cos(theta)]]; 
y = [y [Array_Radius(1) * sin(theta)]]; 
 
%r = 0.2232 
theta = linspace(0,2*pi,n(2) + 1) + 2*pi*rand(1); 
theta(1) = []; 
x = [x [Array_Radius(2) * cos(theta)]]; 
y = [y [Array_Radius(2) * sin(theta)]]; 
 
%r = 0.3448 
theta = linspace(0,2*pi,n(3) + 1) + 2*pi*rand(1); 
theta(1) = []; 
x = [x [Array_Radius(3) * cos(theta)]]; 
y = [y [Array_Radius(3) * sin(theta)]]; 
 
%r = 0.4522 
theta = linspace(0,2*pi,n(4) + 1) + 2*pi*rand(1); 
theta(1) = []; 
x = [x [Array_Radius(4) * cos(theta)]]; 
y = [y [Array_Radius(4) * sin(theta)]]; 
 
%r = 0.6178 
theta = linspace(0,2*pi,n(5) + 1) + 2*pi*rand(1); 
theta(1) = []; 
x = [x [Array_Radius(5) * cos(theta)]]; 
y = [y [Array_Radius(5) * sin(theta)]]; 
 



 184

%r = 0.7252 
theta = linspace(0,2*pi,n(6) + 1) + 2*pi*rand(1); 
theta(1) = []; 
x = [x [Array_Radius(6) * cos(theta)]]; 
y = [y [Array_Radius(6) * sin(theta)]]; 
 
%r = 0.8468 
theta = linspace(0,2*pi,n(7) + 1) + 2*pi*rand(1); 
theta(1) = []; 
x = [x [Array_Radius(7) * cos(theta)]]; 
y = [y [Array_Radius(7) * sin(theta)]]; 
 
%r = 0.9542 
theta = linspace(0,2*pi,n(8) + 1) + 2*pi*rand(1); 
theta(1) = []; 
x = [x [Array_Radius(8) * cos(theta)]]; 
y = [y [Array_Radius(8) * sin(theta)]]; 
 
Radius_NumberElements = [Array_Radius' n'] 
N = n(1) + n(2) + n(3) + n(4) + n(5) + n(6) + n(7) + n(8); 
%**********************************************************************
************** 
%**********************************************************************
************** 
N                     %Display the total number of elements 
%x = x; 
%y = y; 
plot(x,y,'r.'); 
grid on; 
hold off; 
title(['N = ', num2str(N), ', D = 9/10, S = ', num2str(Stage),... 
   ', n_g_a_p_s = 3, e = 37/1000, af(2,214,37,214,70,214,37,214,0)']); 
axis('square'); 
 
%Antenna Element grid positions 
%x; 
%y; 
points = [x' y']; 
size(points) 
%**********************************************************************
************** 
%**********************************************************************
************** 
%AF Plots 
Num_Points = size(points,1); 
a=-60; 



 185

b=60; 
c=0.2; 
[fx,fy] = meshgrid(a:c:b, a:c:b); 
ii = 1; 
AF = 0; 
%Plot Array Points 
figure(3); 
while ii <= Num_Points, 
  af = exp(- i*2*pi * (fx * points(ii,1) + fy * points(ii,2))); 
  plot(points(ii,1),points(ii,2),'r.'); 
  AF = AF + af; 
  ii = ii + 1; 
  hold on; 
end 
title(['N = ', num2str(N), ', D = 9/10, S = ', num2str(Stage),... 
   ', n_g_a_p_s = 3, e = 37/1000, af(2,214,37,214,70,214,37,214,0)']); 
hold off; 
axis('square'); 
axis([-1 1 -1 1]); 
Normalized_AF = abs(AF / Num_Points); 
 
%Add an infinetesmal amount to all the AF components 
%This prevents taking the log of zero 
ii=1; 
while ii <= (size(Normalized_AF,1) * size(Normalized_AF,2)) 
  Normalized_AF(ii) = Normalized_AF(ii) + .00001; 
  ii = ii + 1; 
end 
 
%Change the Array Factor into db scale 
db_AF= 20 * log10(Normalized_AF); 
 
%Filter negligible side lobes 
ii=1; 
cutoff = 60; 
while ii <= (size(db_AF,1) * size(db_AF,2)) 
  if db_AF(ii) > -cutoff; 
   db_AF(ii) = db_AF(ii) + cutoff; 
  else db_AF(ii) = 0; 
  end; 
  ii = ii + 1; 
end 
 
%Plot Top View 
figure(4); 
pcolor(fx,fy,db_AF - cutoff) 



 186

shading interp 
colormap(jet) 
axis xy 
title(['N = ', num2str(N), ', D = 9/10, S = ', num2str(Stage),... 
   ', n_g_a_p_s = 3, e = 37/1000, af(2,214,37,214,70,214,37,214,0)']); 
axis('square'); 
 
%Plot Side View 
figure(5); 
mesh(fx,fy,db_AF - cutoff) 
shading interp 
colormap(jet) 
axis xy 
axis([a b a b -cutoff 0]) 
axis('square') 
view([90 0]) 
title(['Side View: N = ', num2str(N), ', D = 9/10, S = ', num2str(Stage),... 
   ', n_g_a_p_s = 3, e = 37/1000, af(2,214,37,214,70,214,37,214,0)']); 
 
%Plot Side View, Between -20 and -10 db 
figure(6); 
mesh(fx,fy,db_AF - cutoff) 
shading interp 
colormap(jet) 
axis xy 
axis([a b a b -20 -10]) 
axis('square') 
view([90 0]) 
title(['Side View: N = ', num2str(N), ', D = 9/10, S = ', num2str(Stage),... 
   ', n_g_a_p_s = 3, e = 37/1000, af(2,214,37,214,70,214,37,214,0)']); 
 
%Plot 3-D 
figure(7); 
mesh(fx,fy,db_AF - cutoff) 
shading interp 
colormap(jet) 
axis xy 
axis([a b a b -cutoff 0]) 
%axis('square') 
title(['N = ', num2str(N), ', D = 9/10, S = ', num2str(Stage),... 
   ', n_g_a_p_s = 3, e = 37/1000, af(2,214,37,214,70,214,37,214,0)']); 
 
%Plot Radial Cut 
figure(8); 
for ii = 1 : ((b - a)/c + 1), 
  db_AF(ii, 2 : ((b - a)/c + 1)) = 0;   %if meshgrid has mainbeam at origin 



 187

%  db_AF(ii, 1 : b/c) = 0;         %if meshgrid has mainbeam in center  
%  db_AF(ii, b/c + 2 : (b-a)/c + 1) = 0; 
end 
mesh(fx,fy,db_AF - cutoff) 
shading interp 
colormap(jet) 
axis xy 
axis([a b a b -cutoff 0]) 
axis('square') 
view([90 0]) 
title(['Radial Cut: N = ', num2str(N), ', D = 9/10, S = ', num2str(Stage),... 
   ', n_g_a_p_s = 3, e = 37/1000, af(2,214,37,214,70,214,37,214,0)']); 
%**********************************************************************
************** 
%**********************************************************************
************** 
 



 188

 
SPARSE CANTOR RING ANTENNA ARRAYS WITH NON-UNIFORM ELEMENT 
SPACING........................................................................................................................ 157 
Frederick U. Diaz, University of Pennsylvania (Electrical Engineering)  
ABSTRACT.................................................................................................................... 157 

1. INTRODUCTION .............................................................................................. 157 
1.1 Antenna Arrays ............................................................................................... 157 
1.2 Fractal Electromagnetics................................................................................. 158 
1.3 Jaggard and Jaggard’s Fractal Ring Arrays .................................................... 158 

2. FRACTALS AND FRACTAL DESCRIPTORS................................................ 159 
2.1 Background ..................................................................................................... 159 
2.2 Fractal Dimension........................................................................................... 160 
2.3 Lacunarity ....................................................................................................... 163 

3. PROBLEM STATEMENT AND SOLUTION .................................................. 163 
3.1 Overview and Goals........................................................................................ 163 
3.2 Preparations ..................................................................................................... 164 
3.3 Construction of Cantor Ring Arrays ............................................................... 164 
3.4 Planar Arrays and Their Radiated Fields ........................................................ 165 
3.5 Departure from Continuous Cantor Rings ...................................................... 166 
3.6 Azimuthal Element Configurations ................................................................ 167 

4. DISCUSSION AND CONCLUSIONS .............................................................. 167 
4.1 Array Factor of the Continuous Case.............................................................. 167 
4.2 Fractal Array Results ...................................................................................... 168 
4.3 Comparison to Periodic Lattice and Random Disk......................................... 169 
4.4 Overall Results and Conclusions .................................................................... 169 

5. RECOMMENDATIONS.................................................................................... 170 
6. ACKNOWLEDGEMENTS ................................................................................ 170 
7. REFERENCES ................................................................................................... 171 
8. BIBLIOGRAPHY............................................................................................... 171 
9. APPENDICES .................................................................................................... 172 

 


