Non-Uniform Cantor Ring Arrays

Frederick Diaz University of Pennsylvania

> Advisors: Dr. Dwight L. Jaggard and Aaron D. Jaggard

The Geometry of Nature

• The Euclidean Perspective

- Circles, rectangles, triangles
- Spheres, cubes, cylinders, cones

The Non-Euclidean Geometry of Nature Clouds are not spheres

- Mountains are not cones
- A coastline is not a curve
- Lightning is not composed of straight lines

What is a Fractal?

Self-similarityDimensionLacunarity

Cantor Set

Antennas and Arrays

Single Antenna → Broad Radiation Pattern Television networks

• Radio stations

Array → Point-to-Point and Preferred Coverage

- Flight towers for pinpointing location of planes
- Medical imaging and scanning

Array Factor

Traditional Array Configurations

Fractal Arrays

• Random Fractals => Low Sidelobes + Robustness

 Combine order and disorder to restrict randomness (tethering)

Creating Cantor Arrays

Motivation and Reference Points

Base Case: Cantor Ring Array ($N = \overline{556}$) 3-gap Cantor Bar, Stage 2, D = 9/10

Goals

- Design discrete Cantor ring arrays comparable to continuous case
- Design arrays superior to or comparable to periodic and random cases with regard to:
 - Number of elements
 - Sidelobe level
 - Visible range
 - Robustness
 - Mainbeam quality

Azimuthal Element Configurations

Project Results

Next Steps

Other Element Configurations

- Tapered
- Inverse-tapered
- Fractal in azimuthal direction