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ABSTRACT 
 
Currently, legged locomotion over obstacles remains a great challenge in robotics. The 
equations describing so-called “extreme” walks are highly complex, and the contact 
forces between the robot and its environment are not easily modeled. A major research 
goal in the field of robotics is to develop capacity for “extreme” walks while keeping 
computations tractable. 
 
This study was designed to create a method for making a Sony Aibo walk up a 1-inch 
step consistently. Project activities focused on finding ways to apply simple models for 
generating walks onto the step. Once the study identified a class of “extreme” walks in 
lower dimensions, parameters were hand-tuned in an effort to assess whether a 
prospective class of walks was appropriate or not. 
 
As a result of the work completed in this study, both a 35 mm and a 50 mm step were 
scaled successfully by the Sony Aibo. Avenues for future work include: 1) the 
development of an automatic system for determining footfall order and step 
displacements, 2) a method for automatic primitive identification and switching, 3) 
refinements to the fields employed, and 4) extensions to extreme dynamic locomotion. 
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1. INTRODUCTION 
 
A major research goal in the field of robotics is to develop capacity for “extreme” walks 
while keeping computations tractable.  In order to create a class of agile legged robots 
capable of assisting troops in the field, DARPA (Defense Advanced Research Projects 
Agency) has issued solicitation BAA 05-25, which has as its primary objective the 
development of learning techniques that will permit a quadruped to walk across an 
obstacle-strewn terrain. 
 
This study was designed to create a method for making a Sony Aibo walk up a 1-inch 
step consistently, in preparation for the associated DARPA project. The Sony Aibo was 
selected because, although the DARPA-supplied robot is not currently available, the Aibo 
has a similar size and structure. Project activities focused on finding ways to apply simple 
models for generating walks onto the step. The rationale behind developing the simple 
models was that the models would eventually be machine learned. To address the present 
objective, hand-tuning alone was sufficient. 
 
As a result of the work completed in this study, both a 35 mm and a 50 mm step were 
scaled successfully by the Sony Aibo. The method used will be explained fully in the 
following sections. Areas requiring future work -- such as footfall order determination 
and primitive switching -- will also be described. 
 
2. OVERVIEW OF STEP METHOD 
 
The method used for scaling the obstacles mixed a potential field formulation for torso 
placement with pre-set geometries for footpaths during steps. The torso was subjected to 
rigid-body translation and rotation from fields that were determined by leg extension, leg 
orientation, and body balance. At each frame, the step function would attempt to find a 
local minimum in the potential field by iteratively “riding” the field, and the torso would 
move toward this minimum as quickly as possible.  The feet were pre-sequenced to place 
themselves at certain end positions in turn and, as such, were not affected by the fields. 
 
Interspersed between the footfalls were periods in which the robot would shift its center 
of balance over the three feet that were to be stationary over the next cycle. This insured 
that the robot did not immediately fall over when the next foot was raised. 
 
A set of primitives (namely, front-up move-forward and rear-up) were found that allowed 
the robot to more effectively negotiate large obstacles.  By separating the larger task of 
obstacle-scaling into these primitives, field parameters could be tuned more specifically 
and different footfall sequences could be determined for different situations. 
 
Part 3 will explain the types of potential fields exerted on the torso.  Part 4 will explain 
the rigid-body dynamics used to evaluate the effect of these fields.  Part 5 will briefly 
explain the implementation of trapezoidal step paths.  Part 6 will discuss the various 
primitives’ parameters and the footfall sequences for these primitives. 
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3. EXPLANATION OF POTENTIAL FIELDS 
 
Early on, it was recognized that it would be necessary to have the torso displace and pitch 
in order to keep the robot’s feet stable and within their configuration spaces. The original 
study proposal [1] called for the use of explicit primitives, like “pitching” and 
“climbing”, to accomplish these tasks. This, however, would have required complex 
tuning and switching. The use of potential fields allowed vast simplification. 
 
There were three main types of fields applied to the torso: radial leg fields, angular leg 
fields, and a balance field.  The leg fields were applied to the hips of each leg, and 
resulted in both translation and rotation for the torso.  The balance field was applied at 
the center of mass of the robot, and thus allowed for only translation.  As will be 
explained in section 4, these fields determined instantaneous momentum, not force. 
 
The radial leg and angular leg potential fields were modeled to keep the feet within their 
configuration spaces.  The balance field was added to keep the dog from falling over.  
These fields are explained in greater detail below. 
 
3.1 RADIAL LEG FIELDS 
 
The radial leg fields, depicted in Figure 1 as springs, were nicknamed “shock-absorber 
fields” since their effect was similar to attaching shock absorbers between the hip and 
foot of each leg.  Stretching a leg near the limit of its configuration space tugged the torso 
after it; likewise, bringing a leg close in to the torso tended to push the torso away.  The 
purpose of these fields was to avoid the imaginary angles and odometry problems 
associated with attempts to position the leg beyond the singularities. 
 

 
 

Figure 1 – Radial Leg Fields 
 
The characteristic force-displacement response, though, was quite dissimilar to the 
classical linear spring.  The study showed that it was advantageous to create a large “dead 
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zone” within which the robot was unaffected by the shock-absorber field. Therefore, the 
field was modified to be the product of a line with the sum of two exponentials: 
 
Force = A · (x · natural_length) · (exp(B · (x – max_length)) + exp(C · (min_length – x))) 
 
In the function above, ‘x’ is the extension between the hip and foot. Note that, by 
modulating the constants B and C, the operator can make the force-displacement profile 
asymmetric – an advantage not afforded by other functions with “dead zones” (such as 
hyperbolic sine or high-degree polynomials). An example of the force-displacement 
profile of this function, with real parameters taken from the code, is given in Figure 1.  
Note that, since the constants B and C are equal, the asymmetry is not fully employed. 

 
Figure 2 – Force-Displacement profile of Radial Leg Field 

 
3.2 ANGULAR LEG FIELDS 
 
The radial leg fields served to keep the legs within their extension limits. However, using 
radial fields alone led to situations in which the robot would try to position its legs 
outside their angular limits. Therefore, it was necessary to add in angular leg fields, so 
that extreme angles could be avoided. 
 
The angular fields were decomposed into two fields for each leg: a “flap” field, and a 
“swing” field. Figure 3 shows the axis convention employed for the robot, and Figures 4 
and 5 show the “swing” and “flap” angles, respectively. The axis convention is consistent 
across the three figures. 
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Figure 3 – Sony Aibo Axis Convention 

 

 
Figure 4 – Y-Z Plane of Robot with “Swing” Angle Indicated (Front Right Leg) 

 

 
Figure 5 – X-Z Plane of Robot with “Flap” Angle Indicated (Front Right Leg) 
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The “swing” angle, marked α on Figure 4, is the angle between the projection of R (the 
vector from the hip to the foot) on the Y-Z plane and the –Z vector.  The sign convention 
used made the angle depicted negative, so it is marked as such.  Likewise, the “flap” 
angle, marked β on Figure 5, is the angle between the projection of R on the X-Z plane 
and the –Z vector (the sign convention makes the angle depicted positive). 
 
For each field a force function similar to those used by the radial fields was implemented, 
since it was found that a “dead zone” was advantageous with the angular fields as well.  
Thus, both “flap” and “swing” had a natural angle, a minimum angle, and a maximum 
angle associated with it. 
 
The direction along which the force was applied to the torso, however, was different 
between the two fields and distinct, obviously, from the radial fields as well.  The 
direction for the force application due to the “swing” field was along the cross product of 
the X vector and R, and the direction for the force application due to the “flap” field was 
along the cross product of R and the Y vector.  Both directions are denoted on their 
respective figures with the heavier arrows.  The rationale behind using the cross products 
for the directions of application was that they would provide the most efficient angular 
change without radial change, given that the foot position remained constant. 
 
3.3 BALANCE FIELD 
 
The final potential field force implemented on the torso was a balance field.  In order to 
keep the robot statically stable (the gaits generated were all static, not dynamic, gaits) it 
was necessary both to keep at least three legs on the ground at a time and to ensure that 
the robot’s center of mass was within the polygon determined by the feet on the ground.  
Therefore, a field was implemented that drew the torso towards the centroid of the 
polygon determined by the planted feet. 
 
Figure 6 shows a schematic of the balance field for the case where the front right foot is 
off the ground.  The planted feet are shown and labeled (no legs are shown, since they are 
unnecessary for the calculation of the force or direction).  The force runs from the 
centroid of the torso to the centroid of what is, in this case, a triangle whose vertices are 
the positions of the planted front left foot, rear left foot, and rear right foot. 
 
The magnitude of the force is calculated using a hyperbolic tangent: 
 

Force = A · tanh(B · x) 
 
Variable ‘x’ is the magnitude of the vector from the torso centroid to the foot centroid. 
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Figure 6 – The Balance Field (Bird’s Eye View) 

 
4. EXPLANATION OF THE RIGID-BODY REACTIONS 

 
The torso acted as a 4-DOF rigid body, limited to x-y-z translation and pitching.  The 
“forces” at the hips of the four legs and at the center of mass of the torso were summed 
by standard techniques to provide a net resultant force and a net moment (it was assumed 
that the center of geometry of the torso was also the center of mass).  The way the force 
and the moment were applied, however, were different from the standard convention: 
 

Force = mass · velocity 
 

Moment = moment of inertia · angular velocity 
 
Thus, the fields implemented are probably most appropriately called “momentum fields”. 
In the interest of simplicity, these “momentum fields” were implemented instead of 
“force fields”. Since the function was aiming for the local minimum, it didn’t make a 
difference whether velocity was integrated from accelerations or not.  
 
The mass and moment of inertia were defined as parameters in the step function. Since 
the system was 4-DOF, the moments of inertia corresponding to yaw and roll were 
effectively set to infinity.  There were also caps on the maximum angular and 
translational velocities that could be achieved. 
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5. EXPLANATION OF THE LEG PATHS 
 
The footpaths used were inspired by the trapezoidal steps simultaneously developed by 
Newcastle University and the University of New South Wales for the Robocup 2003 
competition [2, 3].  The rationale behind using a trapezoidal step in robot soccer was the 
speed advantage. Disengaging the claw of the Sony Aibo from the field material yielded 
a speed increase of about 10%.  While, for the case at hand, speed was not important, it 
was crucial that the robot’s feet not be hindered by the material. Consequently the 
trapezoidal method was employed. 
 
A schematic of the trapezoidal step is provided in Figure 7.  There was no bottom stroke 
to the step. Traversal was accomplished by torso repositioning across different foot 
positions. The parameters φ, γ, and ‘minimum clearance’ determine the shape of the step. 
Additional parameters determine the speed with which the step is executed in the Rise, 
Traverse, and Lower Stages. 
 

 
Figure 7 – Trapezoidal Step Path (Side View) 

 
In the case that there is an x-displacement in the step, the path must skew in the X-Y 
plane.  In this case, both the Rise and Lower Stages have no component in the x-
direction.  This is to ensure that there is still a clean disengagement from the field 
material.  Figure 8 gives a top down view of what a skewed step might look like. 
 
6. PRIMITIVE PARAMETERS AND FOOTFALL SEQUENCES 
 
Once all the fields were in place, the final challenges were to find a suitable sequence of 
footfalls to climb the step and to tune the field parameters. 
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Figure 8 – Skewed Trapezoidal Step Path (Bird’s Eye View) 

 
The footfall sequence was a list of 4 element vectors, which denoted the x, y, and z 
displacements of the step as well as an index of the leg that was stepping.  The step 
function assumed that the foot was just resting on a surface at the end of each footfall. 
The function was completely open-loop and this “foot resting” condition was necessary 
so that the robot’s orientation could be accurately calculated. Unfortunately, it was the 
general case that for the scaling footfalls some experimentation was required to find the 
exact z-displacement that would allow the foot to just set down.  This was because the 
Sony Aibo has large plastic casings around its forepaws, making it very difficult to get 
exact measurements for the point of contact. 
 
The method for parameter tuning, likewise, was trial and error: any set of parameters that 
led the robot to try to effect positions outside its configuration space was deemed 
unsuitable, as was any set that resulted in the robot’s losing its balance.  Tuning the 
parameters thus proved exceptionally difficult, as the robot seemed to inevitably violate 
at least one of the two criteria.  This was remedied, however, by the development of a 
shifting foot-cycle: while traditional non-extreme static gaits use 4 step foot-cycles, it 
was found that an irregular cycle led to a large qualitative improvement in the robot’s 
performance.  Once the irregular cycle was implemented, it was not long before the 
parameters were tuned appropriately, and the robot was able to successfully scale a 35 
mm step. 
 
The next step after scaling a 35 mm, or 0.25 L (L = leg length) step was to scale a 50 mm 
(0.35 L) step.  Unfortunately, the advances that resulted in the scaling of the smaller step 
were not quite sufficient to permit scaling the larger one.  In general, parameters that 
allowed good performance for one portion of the step led to significant failure in other 
portions. 
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The solution was to simply use different parameters for different parts of the step.  The 
three primitives that resulted (front-up, move-forward, and rear-up) each had its own 
footfall sequence and parameters – thus the irregular cycle used to scale the 35 mm step 
became a concatenation of three distinct cycles. 
 
Once the primitives were set in place, it was a simple matter of re-tuning the parameters 
and footfalls to scale the new step.  The footfall sequence remained unchanged from the 
35 mm step to the 50 mm step.  Indeed, the ease with which the robot was retuned 
suggests the robustness of the field method, although it should be noted that the motion 
returned from the front-up primitive had to be smoothed and sped up. This was, however, 
a problem for finding the minimum of the force field and not a problem inherent in the 
fields themselves.  Figures 9 and 10 give information on the primitive parameters and 
footfall sequences employed for the 50 mm step. 
 

Front-Up Move-Forward Rear-Up
k_radial 1 1 1
coeff_radial 0.3 0.3 0.3
m 1 1 1
I 50 50 50
max_v_ride 1 2 2
max_v_trap 1 1.5 1.5
max_o 0.1 0.01 0.01
b 0.5 0.5 0.5
b_coeff 0.05 0.05 0.05
phi 0.15 0.15 0.15
gamma -0.15 -0.15 -0.15
front_h 25 20 10
rear_h 25 25 25
rise_speed 2 4 4
traverse_speed 2 4 4
lower_speed 2 4 4
natural_flap 0.2 0.2 0.2
max_flap 1 1 1
min_flap -0.05 -0.05 -0.05
natural_swing 0 0 0
max_swing 1.4 1.4 1.4
min_swing -1.4 -1.4 -1.4
k_flap 1 1 1
k_swing 5 5 5
coeff_flap 5 5 5
coeff_swing 5 5 5

1 2 3 4
natural_length 105 110 105 110
max_length 135 140 135 140
min_length 60 65 60 65  

Figure 9 – 50 mm step Parameter Summary 
 
The picture in the upper right of Figure 9 identifies the four legs by the numerical 
convention employed in the footfall sequence. The lower table in Figure 9 uses this 
convention.  Figure 9 also identifies the initial stance of the robot. 
 
The natural_length, max_length, and min_length given in the lower table refer to the 
associated radial field values (all in mm). The radial parameter k_radial serves as A and 
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coeff_radial serves as both B and C in the following expression (given earlier in section 
3.1): 
 
Force = A · (x – natural_length) · (exp(B · (x – max_length)) + exp(C · (min_length – x))) 
 
Likewise, k_flap and k_swing are both A in their respective functions, and coeff_flap and 
coeff_swing are each both B and C.  The angles natural_flap, max_flap, etc. are all given 
in radians. 
 
The parameter b serves as A and b_coeff serves as B in the following expression (given 
earlier in section 3.3): 

 
Force = A · tanh(B · x) 

 
The parameter max_v_ride refers, in mm/frame, to the maximum speed the torso is 
allowed to move during while “riding” the potential field (i.e. with all four feet on the 
ground); likewise, max_v_trap is the maximum speed the torso is allowed to move while 
stepping (three feet on the ground).  Similarly, max_o is the maximum angular speed the 
robot is allowed to pitch (in rad/frame). 
 
Phi and gamma are as noted in Figure 7.  Rise_speed, traverse_speed and lower_speed 
are the maximum mm/frame a stepping foot is allowed to move in each of the three 
stages (noted in Figures 7 and 8). 
 

x displacement 0 0 0 0
y displacement 65 70 70 60
z displacement 0 50 50 0
leg index 2 1 3 4

x displacement 0 0 0 0
y displacement 70 70 70 60
z displacement 0 0 0 0
leg index 1 3 2 4

x displacement 0 0 0 0
y displacement 85 75 85 60
z displacement 0 30 -10 30
leg index 1 2 3 4

Front-Up

Move-Forward

Rear-Up

 
Figure 10 – 50 mm step Footfall Summary (displacements in mm) 

 
Certainly, a quick examination of Figure 10 reveals that the three primitives are quite 
distinct, not only in footfall order but in the characteristics of their steps.  Note that the 
Rear-Up z-displacements for the rear left and rear right legs are much less than 50 mm. 
This factor is attributable to the previously mentioned forepaw casings.  Also, across all 
three primitives the y displacements of leg 4 (rear right) seem to lag behind the others. It 
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is possible that this asymmetry makes it necessary to bring foot 3 down 10 mm in the 
Rear-Up primitive. 
 
7. DISCUSSION AND CONCLUSIONS  
 
Extreme Legged Locomotion is an important and very difficult problem.  The huge 
number of dimensions faced by a researcher attempting to solve the problem makes most 
solution techniques worthless.  In the interest of limiting the problem so that part of it 
could be solved using traditional (gradient based) learning techniques, a field/pre-set 
geometry system was set up to create an appropriate class of extreme steps.  The system 
was tested on two obstacles (a 35 mm step and a 50 mm step), and was successful at 
negotiating both. 
 
Problems remain, however, with determining the proper footfall sequence as well as foot 
displacements during these sequences.  Currently, these sequences and displacements are 
tailored to specific primitives and are associated with specific obstacles. There is no 
algorithm in place to find a footfall sequence or set of displacements for an arbitrary 
obstacle field.  In addition, the primitive switching employed here will have to be 
codified if it is to be learned automatically. Also, refinements to the field system used, 
including allowances for balance improvements, anticipatory fields, 6-DOF motion, and 
computational optimization might be necessary.  Finally, the matter of extreme dynamic 
stepping must be addressed.  Future studies will be required to solve these crucial 
problems (see section 8). 
 
8. RECOMMENDATIONS 
 
The problems listed in the closing of section 7 will now be expanded upon, and possible 
solutions will be suggested. 
 
8.1 FOOTFALL ORDER AND STEP DISPLACEMENTS 
 
The largest unaddressed problem in the extreme step approach outlined here is that the 
footfall order and step displacements were pre-set by the operator.  Any system that 
endeavors to provide locomotion over an arbitrary obstacle field cannot use this 
technique. 
 
One possible way to solve this problem is to use the fields themselves to plan appropriate 
sequences of extension and recovery.  By integrating the fields to create a scalar potential 
field (or by creating a new, simplified scalar field) important information can be gleaned 
about the “comfort” of certain poses.  It may be possible to use a state machine to decide 
when to extend into “uncomfortable” positions and when to relax into “comfortable” ones 
(a naïve approach of only executing “comfortable” positions would greatly hinder the 
efficacy of the walk).  Future footfalls could be planned in advance, and appropriate “set-
up” steps could be sequenced to allow low potential and good balance. 
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This footfall code was not put in place due to its sheer computational complexity. Given 
that the step sequences themselves took upwards of 2 minutes to calculate, cycling 
through hundreds of potential future moves was not feasible.  In addition, since all steps 
used in the study were handmade, the limited amount of terrain available for testing was 
likely to make any experimental system unreasonably condition-dependent. Finally, and 
perhaps most importantly, there was not enough good feedback to test out different 
footfall patterns.  The DARPA set-up will probably solve the last two problems. 
Significant re-tweaking might solve the first (see section 8.3). 
 
8.2 PRIMITIVE SWITCHING 
 
The next significant problem with the previously outlined extreme step approach is the 
arbitrary creation of primitives, with their own field parameters and footfall sequences.  
The footfall sequence problem might be solved by the method described in section 8.1, 
but the field parameter switching problem remains. 
 
Enumerating primitives is a possible solution.  Such primitives could be identified by the 
pitch angle and roll angle (see section 8.3) as well as the planned trajectory of the 
stepping foot.  A large, but certainly non-infinite, number of primitives would result, and 
each could be tuned in turn.  One difficulty with this method would be learning the 
border conditions between primitives. 
 
A promising alternative would be to make the field parameters a function of pitch, roll, 
and intended step trajectory. A simple linear function might suffice.  In this way, the 
problem of primitive creation and switching might be sidestepped.  Also, the parameters 
that define the functions could themselves be learned with traditional gradient-based 
techniques. The number of dimensions to be learned, however, would at least double, and 
most likely triple, under this system. 
 
8.3 FIELD REFINEMENTS 
 
The first clear area for field refinement is the balance field.  The radial and angular foot 
fields enjoyed a “dead zone”, which tended to enhance their performance. The balance 
field, on the other hand, had no such property.  Indeed, the field, with its sole dependence 
on the distance between the torso centroid and planted-foot-triangle centroid, neglects 
what often are extreme aspect ratios in the triangle.  Given additional time for 
implementation, the simple fix shown in Figure 11 might be applied.  The lines are force 
directions, leading directly in from each face of the triangle.  Within the triangle, there is 
a much smaller pull towards the center. 
 
The inclusion of anticipatory fields is a second proposed improvement for future studies.  
Currently, all anticipatory action is hard-coded in: in between footfalls, the robot shifts its 
weight to the feet that will be planted during the next step.  A set of anticipatory fields 
could accomplish this task automatically, making the entire process more coherent. 
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The third area for improvement is more obvious: the 4-DOF system should be extended 
to 6-DOF.  This was not implemented in the current project, since it was decided that the 
symmetric nature of the step made the ability to roll and yaw unnecessary.  For arbitrary 
obstacle fields, however, roll and yaw will require substantial refinement.  To this end, a 
quaternion-based representation of the torso’s orientation could be implemented, as 
described by Mirtich [4]. 
 
Finally, the fourth area for improvement is the method for determining field equilibrium.  
In the present state, the field is evaluated up to 100 times per frame to determine in which 
direction the torso must move.  With proper tuning, it might be possible to eliminate this 
inefficiency all together, or at least limit the cycles to a more reasonable number.  This 
would allow the robot to execute its moves in real time, reacting to outside information. 
Computational overhead limited the current approach to being open-loop. 
 

 
Figure 11 – Refined Balance Field 

 
8.4 EXTREME DYNAMIC LOCOMOTION 
 
The final problem to be addressed is most certainly the most interesting: the difficulty of 
developing dynamic steps for extreme conditions.  Dynamic steps would not only provide 
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speedier traversal of obstacles, they are also likely to offer improved performance, 
allowing the robot to cross obstacles which static steps alone cannot surmount. 
 
The same field principles used in the execution of static steps could be used. But they 
would require significant and complex modifications. In particular, the balance fields and 
heretofore non-existent anticipatory fields would have to be extremely well tuned to deal 
with the unpredictable conditions encountered. The balance field would probably require 
some strategic imbalance as well.  More likely, a completely different system will have to 
be developed to deal with so much additional complexity. 
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APPENDIX: INVERSE KINEMATICS 
 
Inverse kinematics refer to the calculations required to convert an (x, y, z) triple to a set 
of angles (θ1, θ2, θ3).  In the case of the Sony Aibo (and for the DARPA robot, since they 
share the same limb geometry) there are typically multiple solutions, except at the 
singularity.  Beyond the singularity, any angles returned by the inverse kinematics 
function will have imaginary components.  Presented below is a MATLAB function that 
takes XYZ, an (x, y, z) triple relative to the right front shoulder, and returns angles, the 
angle vector (shoulder swing, shoulder flap, and knee swing) required by the front right 
leg to effect the position. 
 
The variable ‘lone’ is the length of the thigh on the robot, and ‘ltwo’ is the length of the 
shin.  The variable ‘upperoffset’ is the y-offset from the hip to the knee when the leg is 
pointing straight down, and ‘loweroffset’ is the y-offset from the knee to the foot pad 
under the same conditions.  All lengths are in millimeters. 
 
 
function angles = getanglesfrontright(XYZ) 
  
lone = 69.5; 
upperoffset = 9; 
ltwo = 71.5; 
loweroffset = -9; 
  
P = 2*(upperoffset*loweroffset + lone*ltwo); 
Q = 2*(ltwo*upperoffset - lone*loweroffset); 
R = loweroffset^2 + ltwo^2 + upperoffset^2 + lone^2 - (sum(XYZ.^2)); 
  
angles(3) = atan2(Q/sqrt(P^2 + Q^2),P/sqrt(P^2 + Q^2)) - acos(-
R/sqrt(P^2 + Q^2)); 
 
if (angles(3) < 0)      %So that we don't snap the dog's knees 
    angles(3) = atan2(Q/sqrt(P^2 + Q^2),P/sqrt(P^2 + Q^2)) + acos(-
R/sqrt(P^2 + Q^2)); 
end 
     
P = loweroffset*cos(angles(3)) + ltwo*sin(angles(3)) + upperoffset; 
Q = lone + ltwo*cos(angles(3)) - loweroffset*sin(angles(3)); 
  
angles(2) = asin(XYZ(1)/Q); 
  
Q = cos(angles(2))*Q; 
  
components = inv([Q P;P -Q])*[XYZ(2);XYZ(3)]; 
  
angles(1) = atan2(components(1), components(2)); 
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