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ABSTRACT

Designing a robot that can autonomously traverse a variety of terrain types is difficult. For
this reason, one may refer to nature for inspiration and produce robots that mimic biological
organisms. EduBot is one such device, a hexapedal robot that resembles a cockroach. Building
a robot that mimics a living creature offers numerous advantages, including design efficiency
and locomotive stability. In addition, mathematical models that describe animal walking and
running can be applied to the device, so an entire existing body of analysis can be used to
characterize the robot’s movement; this saves time and increases intuitive understanding. One
such model, the spring-loaded inverted pendulum (or SLIP) model for animal running, has
been successfully applied to EduBot’s forward motion. However, like many animals, EduBot
deviates from this model in that it exhibits a rolling motion about its forward axis. The goal
of the current research is to describe this motion with a simple model and use the model to
motivate modifications to the robot that will eliminate the roll. To characterize the roll, we
measure the ground reaction forces from each of the robot’s legs with a force plate and use a
video-based motion capture system to record the robot’s trajectory through space. We show
that the maximum roll appears to decrease as the middle legs are made stiffer, which matches
the prediction from the model.
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1 INTRODUCTION

Calling upon nature to inform the design of a robotic device is a common technique in robotics;
there exist numerous insect-like robots [1] [2], biologically-inspired implements like whiskers are
common extensions for robotic sensing [3], and investigations into biological locomotion have
potential applications to robotic movement [4].

The benefits of biomimesis in legged locomotion are numerous. First, a biological organ-
ism’s gait is often efficient and passively stable. As a consequence, their artificial counterparts
frequently exhibit these same qualities [5, 1]. Second, mathematical models created to describe
a mimicked biological organism can be readily applied to the mimicking robotic device [6] [2].
Aside from simplifying analysis by permitting the use of established mathematical tools, this
crossover provides a useful intuitive context for studying the robot.

One such biomimetic device is RHex, a cockroach-like hexapedal robot [1]; it is fast, highly
mobile, and relatively stable [7]. A model from biological investigations which has found fruitful
application to RHex is the spring-loaded inverted pendulum (SLIP) model for running and
hopping [8]. In the SLIP model, the organism in question is abstracted as having only a single
spring-loaded leg. This leg contacts the ground at one end and is attached to the body’s mass
at the other. The SLIP model has been successfully applied to a wide variety of animals [9], as
well as RHex [6]. Applying the SLIP model to RHex’s motion is useful for two reasons. First, it
provides an underlying intuition for why the robot moves so efficiently and so stably. Second, it
provides a simple enough template for the robot’s motion that actual analysis can be performed
on the stability [5, 10], providing a mathematical explanation for the observed robustness of
the robot’s gait. We work here with a smaller version of RHex called EduBot whose design
and movement is similar to its predecessor. We are thus motivated to seek similarly simple and
descriptive models for other aspects of EduBot’s motion with the dual purpose of understanding
the basic mechanical properties of the robot intuitively and of providing a rigorous justification
for its design.

In particular, EduBot exhibits a seemingly periodic and stable rolling motion about the
forward axis. It is unclear what, exactly, is causing this lateral roll. More importantly, it is
unclear how this roll affects the overall forward motion. It is possible the rolling contributes to
stability or efficiency, but it is also perfectly possible that the rolling motion adversely affects
both. We present here a simple model for the roll and use the model to inform a modification
to the robot’s hardware intended to eliminate the roll.

Various techniques have been developed for modeling and analyzing equilibrium gaits. We
take as a simple and canonical example the passive walker [11] [12] and attempt to perform a
similar sort of analysis using techniques from the field [13] [14]. Since we find that our model’s
dynamics cannot be integrated directly, we are forced to pose the problem in less direct terms
in an attempt to prove gait properties [5, 10] [15].
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Figure 1: Example trajectory for the Spring-Loaded Inverted Pendulum Model for animal
running.

1.1 OVERVIEW

We begin with a discussion of the SLIP model for animal running, which is meant to introduce
the reader to the type of modeling problems that have been studied before. We then present
some data recorded with EduBot and note some of the salient characteristics of the robot’s
gait. Then we develop a conservative model for EduBot’s roll and discuss some analytical and
numerical results. Finally, we describe a damped model for the robot’s rolling motion and
present numerical results that suggest a certain physical modification to EduBot will eliminate
the roll and present the results of the physical modification.

2 BACKGROUND

2.1 SPRING-LOADED INVERTED PENDULUM MODEL

We were motivated in the design and analysis of our rolling model by the success of the simple
Spring-Loaded Inverted Pendulum (or SLIP) hybrid dynamical model for animal running. SLIP
has been applied to a variety of animals [9], and even artificial creatures [2] [6], and analysis of
the model has yielded insight into the fundamental nature of RHex and EduBot’s stability [5,
10].

The SLIP model consists of a single point mass attached to one end of a spring; see Figure 1.
This mass M is projected toward the ground with velocity ~v = (v cos β, v sin β) while the spring
is fixed at an angle α from the y-axis. When the spring strikes the ground, the point of contact
is fixed. The spring then compresses, pivots, and uncompresses. When the spring reaches its
nominal length l0, it leaves the ground and the mass-spring system experiences a flight phase.

During flight, the system’s dynamics are transparent. Namely,

x(t) = x0 + ẋ0t, y(t) = y0 + ẏ0 −
1

2
gt2, (1)
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where (x0, ẋ0, y0, ẏ0) represents the system’s state at liftoff. During stance, the system can be
described via its Lagrangian L = T − V in terms of the mass’s position (x, y); specifically,

T =
1

2
M(ẋ2 + ẏ2), V = gMy +

1

2
(l0 −

√
x2 + y2)2, (2)

which leads to the equations of motion for the mass during stance,

ẍ = x
k

m
(

l0√
x2 + y2

− 1), ÿ = y
k

m
(

l0√
x2 + y2

− 1)− g. (3)

These equations cannot be solved analytically as they stand. Koditschek [10] has shown
that if gravity is neglected during stance (corresponding physically to the use of relatively stiff
springs), then a closed-form solution exists, up to the evaluation of a (difficult) integral.

When working with the conservative SLIP model, one typically only considers equilibrium
trajectories, which are those with a constant forward velocity during consecutive flight phases.

3 CONSERVATIVE MODEL FOR ROLL

Noting the success the SLIP model has had in describing the robot’s sagittal-plane motion
and the success researchers have had in producing analytical results about the stability of the
model, we attempt to apply similar methods of analysis to the robot’s roll about its forward
axis.

It seems possible, if not plausible, that this rolling motion is due primarily to an imbalance
in weight distribution during running. Specifically, EduBot utilizes an alternating tripod gait
when running: the two front legs on one side of the body are in contact with the ground while
only the middle leg touches down on the other. Since the legs are compliant, this imbalance
likely compresses one more than the other, resulting in a lateral rolling motion.

To model this behavior, we imagine two massless linear springs attached to either side of
a rod of mass M , moment of inertia J , and width 2w (see Figure 2); for the majority of
our experiments, we assume that mass is distributed evenly throughout EduBot . Assuming
the robot’s legs are very similar due to a fairly precise construction process (supported by
preliminary data), the springs in the model have identical nominal lengths, l0. But as there are
two legs in contact with the ground on one side of the robot while only one on the other, the
spring constants k1 and k2 are in general unequal.

3.1 PRELIMINARY JUSTIFICATION

As EduBot runs, it takes full advantage of its rigid body’s six degrees of freedom: the robot
rolls, twists, pitches, slides, jumps, and runs. To simplify the analysis, we proceed by assuming
that the jumping and rolling motions are decoupled from the rest and analyze them exclusively.
This is a strict assumption, since the full-body dynamics certainly have an effect on the rolling
motion.
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Figure 2: Simple spring-mass model for EduBot’s rolling motion. In general, k1 6= k2. We set
B1 = B2 = 0 when we wish to study a conservative model.

When running at equilibrium, EduBot follows roughly periodic rolling and bounding tra-
jectories. Figure 3 shows such a trajectory (see Appendix D) next to one obtained from the
conservative model discussed here. There are a few distinctive qualitative behaviors to note
about EduBot’s trajectory: first, the center of mass oscillates up and down with a fixed fre-
quency; second, the robot’s roll has a distinct, periodic form that the model roughly captures.

The previous discussion does not completely specify the model, as there are some constraints
we must impose on the dynamics. First, we fix the center of mass of the rod to only move in the
vertical direction (as if fixed on a rail), and allow the ‘feet’ of the springs to slide frictionlessly
across the ground. This removes one degree of freedom from the system, and is a reasonable
simplification, since the robot doesn’t move much laterally on average. Second, it doesn’t make
any sense to allow the rod to flip around—if it rotates beyond ±π

2
, the model is nonphysical.

We get around this by simply not allowing simulations or analysis to proceed into that region
of state space. Third, we allow the springy legs to come off the ground, and thus for the rod
to attain a flight phase. When one or both legs are off the ground, the dynamics should alter
accordingly. This puts the model into the analytically challenging realm of hybrid dynamics [13],
but is necessary to capture the dynamics we are interested in.

Now we have an analytical choice to make about the set of coordinates for our two degree-
of-freedom system. Two obvious choices are to record the two spring lengths (x1, x2) or the
height of the center of mass of the rod and the rod’s rotation (h, θ); we found the equations in
(h, θ) space to be more amenable.

Note that X = {(x1, x2) ∈ R× R} is a linear vector space, whereas Θ = {(h, θ) ∈ R× eiR}
isn’t. The transformation X ↔ Θ is therefore nonlinear. In fact, a simple computation yields
(with θ increasing counterclockwise)

h =
x1 + x2

2
, sin θ =

x2 − x1

2w
, (4)
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Figure 3: Rolling and height trajectories from EduBot data and from simulation; experimental
data was filtered (see Appendix D). There is significant deviation in both coordinates, but the
model qualitatively captures some of the distinctive behavior exhibited by the robot.

a decidedly nonlinear transformation in θ.

Now that we have settled on a coordinate system and have determined all the model’s
parameters, we can write down and analyze the equations of motion for the rod. We choose
to find these equations using the Lagrangian L = T − V , where T is the kinetic energy of
the system and V the potential in the generalized coordinates. (Use of the Lagrangian is not
necessary; the same result follows using Newton’s laws directly.) Our equations of motion then
become

∂L

∂h
− ∂

∂t

∂L

∂ḣ
= 0,

∂L

∂θ
− ∂

∂t

∂L

∂θ̇
= 0. (5)

Analysis of the model during stance yields

T =
1

2
Mḣ2 +

1

2
Jθ̇2, V = Mgh +

1

2
k1(l0 − (h− w sin θ))2 +

1

2
k2(l0 − (h + w sin θ))2. (6)

Solving the equations of motion for ḧ and θ̈, we find

ḧ = 1
M

(−gM + w sin θ(k1 − k2)− (h− l0)(k1 + k2)),

θ̈ = 1
J

(w cos θ ((h− l0)(k1 − k2)− w sin θ(k1 + k2))).
(7)

3.2 STANCE EQUILIBRIUM

We now turn to the task of finding stationary points of the system defined by eq. 7 when the
robot never leaves the ground; specifically, we’re interested in fixing θ̇ ≡ 0. Intuitively, it seems
there can be only a few, and it seems unlikely that there would be any dynamic solutions (i.e.
solutions with ḣ(t) 6= 0 for some t). We therefore seek to back up this intuition with precise
mathematical reasoning.
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STATIC SOLUTION The static solution that ensures θ̇ ≡ 0 can be found by applying
static analysis to the system. When stationary, the springs will have to support the entire
weight of the block, so k1∆x1 + k2∆x2 = Mg. An additional equation relating the ∆x’s comes
from observing that the sum of torques acting on the block must be zero at equilibrium, and
therefore k1∆x1cosθ−k2∆x2cosθ = 0. Combining these two equations (and excluding the case1

θ = ±π
2
), we see that ∆xi = gM

2ki
, i = 1, 2. Using eq. 4, the resulting equilibrium condition is

h0 = l0 −
gM

4

(
1

k1

+
1

k2

)
, ḣ0 = 0, sin θ0 =

gM

4w

(
1

k1

− 1

k2

)
, θ̇0 = 0. (8)

Substituting these initial values into eq. 7 yields ḧ = θ̈ = 0, so the system is at static equilibrium
for all time. Note, conveniently, that if k1 6= k2, these equations imply

h0 = l0 −
gM

2
, ḣ0 = 0, θ0 = 0, θ̇0 = 0, (9)

exactly the static equilibrium condition expected for a simple spring-mass system.

DYNAMIC SOLUTION At this point, the question arises: are there any dynamic solu-
tions that ensure θ̇ ≡ 0? Using physical intuition, it would seem that if one found a point where
the sum of torques was zero, raising or lowering the mass would cause a torque imbalance to
appear, thus giving the body a nonzero angular velocity. This argument is nearly rigorous, and
can probably be made quite precise, but we prefer instead to turn to the equations of motion
to find a mathematical justification for this intuitive explanation.

From eq. 7, we can solve for h in terms of ḧ and sin θ:

h =
1

k1 + k2

[
−gM − ḧM + k1(H + w sin θ) + k2(H − w sin θ)

]
. (10)

Also from eq. 7, assuming θ̈ ≡ 0 (required for θ̇ ≡ 0) yields

sin θ =
(k1 − k2)(h− l0)

w(k1 + k2)
. (11)

Now, substituting eq. 10 into eq. 11,

sin θ =
M(g + ḧ)

4w

(
1

k1

− 1

k2

)
. (12)

Note that if ḧ ≡ 0, this is exactly the case we found for static equilibrium. If ḧ(t0) = η 6= 0,
then ḧ ≡ η, because otherwise θ changes in time, which means θ̇ 6= 0 at some time. But it
would require an infinite amount of energy to ensure ḧ ≡ η 6= 0, so this case is nonphysical.
Therefore there does not exist a system trajectory that sets θ̇ ≡ 0, ḣ(t) 6= 0.

1This is physically justified, since we don’t intend to analyze the case where the robot rolls onto its side.
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3.3 HYBRID DYNAMICAL EQUILIBRIUM

Now that we have shown no dynamic stance equilibria can exist, we turn our attention to the
generally more difficult realm of hybrid dynamical systems, where the governing equations of
motion are allowed to change as functions of state. We use the formalism given by Gucken-
heimer [13], which treats a hybrid system as a collection of 4-tuples (Fα, Vα,Hβ

α, T β
α ) indexed by

α, β ∈ D, where D is a set of dynamical regimes. In this framework, Fα : R5 → R4 governs how
the system progresses through state space in a certain regime α and can be written implicitly
as the solution to a system of differential equations, Vα ⊂ R4 represents the region of state
space reachable in α, Hβ

α : R4 → R are threshold functions that go to zero when the system
transitions from regime α to β, and T β

α : R4 → R4 are transition functions that describe how
to transition between Vα and Vβ. In the model presented here, there are four regimes: flight,
left leg stance, right leg stance, and full stance, denoted by F , L, R, and S, respectively.

3.3.1 ANALYTICAL METHODS

AN APPROXIMATION To approach the problem of finding equilibrium gaits analyti-
cally, we first make an approximation. Since the robot tilts less than 15o in the regime we are
interested in, we make a small-angle approximation, sin θ 7→ θ. This has the effect of reducing
our system to a fourth-order system of linear differential equations, which vastly simplifies the
analysis.

EQUATIONS OF MOTION Our first step is to describe the equations of motion that gov-
ern each regime, the Fα’s. During flight, we can solve explicitly for z(t) = (h(t), ḣ(t), θ(t), θ̇(t)).
Indeed,

FF(t, (h, ḣ, θ, θ̇)) =


hk + ḣkt− 1

2
gt2

0

θk + θ̇kt
0

 , (13)

where (hk, ḣk, θk, θ̇k) is the state of the system at the kth liftoff event.

During stance, we can put the equations in the form ż(t) = Az + b, where A is (4× 4) and
b is (4× 1). During full stance,


ḣ(t)

ḧ(t)

θ̇(t)

θ̈(t)


S

=


0 1 0 0

1
M

(k1 + k2) 0 − w
M

(k1 − k2) 0
0 0 0 1

w
J
(k1 − k2) 0 −w2

J
(k1 + k2) 0




h(t)

ḣ(t)
θ(t)

θ̇(t)


S

+


0

H(k1 + k2)− gM
0

wH(k1 − k2)

 .

(14)
To compute the partial stance equations of motion, simply omit one of the spring constants
in eq. 14: remove k1 to get the equations for R; remove k2 to get the equations for L. To be
explicit,
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ḣ(t)

ḧ(t)

θ̇(t)

θ̈(t)


L

=


0 1 0 0

1
M

k1 0 − w
M

k1 0
0 0 0 1

w
J
k1 0 −w2

J
k1 0




h(t)

ḣ(t)
θ(t)

θ̇(t)


L

+


0

Hk1 − gM
0

wHk1

 , (15)


ḣ(t)

ḧ(t)

θ̇(t)

θ̈(t)


R

=


0 1 0 0

1
M

k2 0 w
M

k2 0
0 0 0 1

−w
J
k2 0 −w2

J
k2 0




h(t)

ḣ(t)
θ(t)

θ̇(t)


R

+


0

Hk2 − gM
0

−wHk2

 . (16)

THRESHOLD FUNCTIONS A threshold function is denotedHβ
α(z), where α is the start-

ing dynamical regime and β the ending one; a transition occurs when Hβ
α(z) = 0. Each H is

accompanied by a corresponding transition function T β
α (z) that specifies how to map points in

the space associated with α to the one associated with β, although in all cases presented here,
T β

α (z) is the identity function.

It is somewhat easier to think about the threshold equations using a different set of coordi-
nates. Specifically, we will rely on the substitutions

x1 = l0 − (h− wθ), x2 = l0 − (h + wθ), (17)

ẋ1 = −ḣ + wθ̇, ẋ2 = −ḣ− wθ̇. (18)

When in flight,

HS
F(z) = (l0 − h)2 + (θ)2,−ḣ− w|θ̇| ≤ 0,
HL
F(z) = (x1)

2, ẋ1 ≤ 0, θ > 0,
HR
F (z) = (x2)

2, ẋ2 ≤ 0, θ < 0.
(19)

When in stance,

HF
S (z) = (l0 − h)2 + (θ)2,−ḣ− w|θ̇| > 0,
HL
S(z) = (x1)

2, ẋ1 > 0, θ < 0,
HR
S (z) = (x2)

2, ẋ2 > 0, θ > 0.
(20)

When in left stance,

HR
L (z) = (l0 − h)2 + (θ)2, ẋ1 > 0, ẋ2 < 0,
HF
L (z) = (x1)

2, ẋ1 > 0, ẋ2 > 0,
HS
L(z) = (x2)

2, ẋ1 < 0, ẋ2 < 0.
(21)

When in right stance,

HL
R(z) = (l0 − h)2 + (θ)2, ẋ1 < 0, ẋ2 > 0,
HF
R(z) = (x1)

2, ẋ1 > 0, ẋ2 > 0,
HS
R(z) = (x2)

2, ẋ1 < 0, ẋ2 < 0.
(22)
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POINCARÉ MAP The definition of an equilibrium gait in the hybrid dynamical case
departs significantly from the definition given in Section 3.2. Here we require that since the
spring constants are exchanged during flight (to model EduBot’s alternating tripod gait2), each
touchdown state (hk, ḣk, θk, θ̇k) must be the mirror image of the previous touchdown state
(hk−1, ḣk−1, θk−1, θ̇k−1); i.e.

(hk, ḣk, θk, θ̇k) = (hk−1, ḣk−1,−θk−1,−θ̇k−1). (23)

Note that hk and θk, the height and rotation at the kth touchdown, are related:

l0 = h− w sin |θ| , (24)

Thus, we can define a Poincaré section Σ (see Appendix A),

Σ = {(h, ḣ, θ, θ̇) ∈ R4 | l0 = h− w sin |θ|} = {(hk, ḣk, θk, θ̇k)}, (25)

Note that the restriction l0 = h − w sin |θ| implies that Σ is a three-dimensional hypersurface
in the four-dimensional state space.

Technically speaking, Σ is only a Poincaré section if it is transverse to the system trajectories
that we are interested in. Formally, this means if the system touches down at time tk, k > 0,
φtk(x0) · nΣ(xk) 6= 0, where xk = (h(tk), ˙h(tk), θ(tk), θ̇(tk)) ∈ Σ is the state of the system at
touchdown, nΣ(xk) is the normal vector to Σ at xk, and φt(x0) is a system trajectory that
passes through Σ. Intuitively, this means the trajectory cannot travel along Σ, i.e., trajectories
intersect Σ at discrete points.

In the physical system this condition is always met. To see this, look at a trajectory φt(x0)
that intersects Σ. Suppose at time tk the body just contacts the ground, yet ḣ(tk) = θ̇(tk) = 0
(otherwise at time tk + ε, 0 < ε � 1, the system has passed through Σ). Now, considering a
point on Σ,

l0 = h(tk)− w sin |θ(tk)| . (26)

Substituting this into the equations of motion for the system (eq. 7) we find that if θ = 0, ḧ 6= 0
and the trajectory passes through Σ. If θ 6= 0, then Mḧ = −gM±2kiw sin |θ|, where i ∈ {1, 2}.
Now ḧ = 0 ⇐⇒ sin |θ| = gM

2kiw
. For the range of parameters we use in our model, this angle lies

in the right half-plane, so it is not a priori an impossible choice. The choice for sin |θ| implies
Jθ̈ = −w cos |θ| (±gM), which, given that the robot doesn’t land on its side, is nonzero. Thus
all system trajectories we are interested in are transverse to Σ, so Σ is a Poincaré section.

With the formal definition of what we mean by an equilibria in the hybrid dynamical system,
we would like to proceed by finding the equilibria analytically and comment on their stability.
Unfortunately, this is such a difficult task that we have made little progress. To use the Poincaré
section, we would need to find an explicit formula for the corresponding Poincaré map, which

2The front and rear legs on one side of EduBot are synchronized with the middle leg on the other. In a gait
with a flight phase, this means only three legs are in contact with the ground during stance.
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we have not yet been able to do. To find the equilibria by some other insight may be possible,
but we have yet to discover the method. Thus, we resort to numerical analysis to investigate
the system’s equilibria.

3.3.2 NUMERICAL METHODS

VECTOR FIELD We start the system simulation (see Appendix C) from a mesh of initial
conditions xi,j

0 ∈ Σ and record the next point xi,j
1 in the trajectory that intersects Σ. We then

make a vector field plot of this data, connecting the initial condition with the final condition3

by a directed line segment (head toward the final condition). θ̇k is plotted along the x-axis and
θk along the y-axis, and since ḣk is determined up to a sign difference by θ̇k (by conservation
of energy), it determines the color of the vector. Since hk is determined by θk by the threshold
equation, it is not contained in the plot.

Unfortunately, due to the unstable nature of the system, x1 generally lands very far from
x0, so these plots initially appear as a mess of intersecting lines. To make the plots useful, they
show vectors at 1/10th or 1/20th their original magnitude; without carefully noting this fact,
the data is distorted. For instance, the scaled-down plots give the impression that the flow field
has stable equilibria, which is almost certainly false.

The point of generating these plots is to gain an intuitive understanding of how the system
progresses from one set of initial conditions to another. One important goal is to identify
equilibrium gaits and determine (roughly in this case) their stability. To identify a fixed point,
we iteratively produce a vector field plot over a given range of parameters, choose the smallest
vector in the plot, and shrink the field range around that point. After ten iterations, we
typically achieve estimates on the fixed point good to about 1%.

RESULTS Figure 4 contains a plot of the conservative vector field with the period-one fixed
point highlighted and enhanced. By narrowing our vision around the approximate fixed point
and remembering that the vectors in the plots are scaled by a factor of 1/20, we begin to see
behavior that suggests an unstable equilibrium. Namely, the fixed point rests on a very narrow
well, and any deviation from the point is amplified by successive strides.

Even if it turns out that the fixed point is locally stable with a small basin of attraction,
we find this physically irrelevant; EduBot clearly exhibits a high degree of stability, so we have
no interest in discussing infinitesimally-attracting equilibrium gaits. For this reason, we turn
toward the investigation of a damped version of the model discussed here to describe EduBot’s
rolling motion.

3We actually plot the final condition after applying the map (θ, θ̇) 7→ −(θ, θ̇); this takes into account the
fact that the leg spring constants are exchanged during flight, and means shorter vectors correspond to more
symmetric gaits.
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Figure 4: Conservative vector field; unstable period-one fixed point highlighted. Vectors scaled
by 1/20th for clarity.
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4 DAMPED MODEL FOR ROLL

Given substantial numerical evidence that the period-one equilibrium gaits in the conservative
model for EduBot’s roll are (at the very least) not significant attractors, we proceed to add
damping to the model with the hope that the attractive basins surrounding fixed points will
enlarge considerably, making stable equilibrium gaits.

Note that if we were to solely add viscous damping to the model in Section 3, our simulations
would become degenerate very quickly. Without a corresponding method to add energy to the
system, there would be precisely one (very stable!) globally attracting equilibrium gait with
infinite (or zero) stride period: the static gait described by

(h, ḣ, θ, θ̇) ≡ (l0 −
gM

4

(
1

k1

+
1

k2

)
, 0, sin−1

(
gM

4w

(
1

k1

− 1

k2

))
, 0). (27)

Thus, we simultaneously add an energy-addition scheme to the conservative model.

ENERGY ADDITION We add energy to the system in a similar manner to Koditschek
and Buehler [16]: when a spring reaches maximum compression in the model, we temporarily
increase its spring constant, thus increasing the energy stored in the spring. When a spring
leaves the ground, its spring constant is reset. Maximum compression is detected when a leg’s
velocity goes to zero,

−ḣ± wθ̇ = 0, (28)

where the ± is determined by which leg is being considered. At that instant, the spring constant
ki is multiplied by an increase factor γ > 1. When the leg leaves the ground, the spring constant
is reset to its initial value.

This energy addition scheme was chosen because it is easy to implement and can facilitate
analysis better than many other methods. However, it is a poor model for the physical system
and could be a source of qualitative disagreement between experimental and simulation results;
we do not investigate the affect of changing the energy addition scheme here.

Figure 5 contains a plot of the damped vector field with one of the period-one fixed points
highlighted and enhanced. Note that vector scaling in this figure is half what it was for the
conservative system plots. There is actually a second fixed point, which can be seen in the
lower half-plane of the upper-left plot; it corresponds to a gait which lands first on the stiff leg.
The period-one equilibrium gait we found for the conservative system lands first on the soft
leg, so we consider this the dominant equilibrium gait, and choose to highlight it in Figure 5.
The second fixed point will be referred to as the suppressed equilibrium gait.

4.1 ELIMINATING ROLL

SPRING CONSTANTS When we constructed the current model, we assumed that the
difference in spring constants drives the rolling motion observed in EduBot, and that letting
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Figure 5: Damped vector field; dominant stable period-one fixed point highlighted. Vectors
scaled by 1/10th for clarity. Though θ determines h at touchdown as in the conservative model,
energy dissipation implies ḣ isn’t determined by θ̇. Thus, these plots show a particular ḣ-slice;
ḣ = −0.59 m/sec.
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k1 → k2 would likely eliminate the roll4. However, we were not sure how the equilibrium gaits
would move toward the origin and what would happen to the gaits’ stability as k1 → k2. To
study the progression of the equilibrium gaits toward the origin, we first compute fixed points
of the Poincaré map P associated with Σ to desired error tolerances, then numerically compute
the Jacobian of P , ∂P

∂(h,ḣ,θ,θ̇)
, to determine how the stability of the gaits changes.

EQUILIBRIUM GAITS Based on physical intuition and qualitative numerical evidence,
we proceed by assuming that equilibrium gaits are stable in the damped model. This means if
the system is allowed to flow from initial conditions close to a fixed point, the Poincaré map
will tend asymptotically to the point. Thus, to find a fixed point to a given tolerance, we run
a forward simulation and average the values of the Poincaré map; the standard deviation in
these values provides our estimate of the error.

NUMERICAL STABILITY Since we have yet to provide an analytical result regarding
the stability of fixed points of the damped model, we turn to numerical methods to estimate
stability. Specifically, we compute the Jacobian of the 4× 4 Poincaré Map P ,

∂P
∂(h, ḣ, θ, θ̇)

=


∂hPh ∂ḣPh ∂θPh ∂θ̇Ph

∂hPḣ ∂ḣPḣ ∂θPḣ ∂θ̇Pḣ

∂hPθ ∂ḣPθ ∂θPθ ∂θ̇Pθ

∂hPθ̇ ∂ḣPθ̇ ∂θPθ̇ ∂θ̇Pθ̇

 (29)

PERTURBED TRAJECTORIES As k1 → k2, we observe that the system becomes more
susceptible to perturbations in that it may begin to switch between equilibrium gaits. For
instance, Figure 6 shows two system trajectories, one with k1 = 1000 N/m, k2 = 2000 N/m
and the other with k1 set to 1500 N/m. At the times indicated by the vertical bars, the system
was perturbed. Perturbations take the form of instantaneous forces: the first perturbation
set ḣ+ = ḣ− + 0.2 m/sec, θ̇+ = θ̇− − 2 rad/sec; the second set ḣ+ = ḣ− − 0.4 m/sec, θ̇+ =
θ̇− − 4 rad/sec. In the first case, the perturbations are rejected, and the system returns to its
equilibrium gait. As k1 → k2, however, the perturbations switch the system back and forth
between the dominant equilibrium gait and the suppressed.

5 RESULTS

Figure 7 shows the model’s prediction for how the state of the body at touchdown changes as
k1 → k2: the angle and angular velocity approach the origin. Ideally, we would generate an
identical plot experimentally, however, the state at touchdown is difficult to measure directly
with EduBot. Thus we present additional results from the model which are more amenable to
experimentation, and compare this data with results from the physical system.

4This is intuitively clear since the body in the model will almost certainly roll when, for instance, k1 = k2/2,
but will not roll at all when k1 = k2, so long as θ0 = θ̇0 = 0 (since in this case the model is equivalent to one
with a single spring with spring constant k = 2k1 = 2k2).
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Figure 6: Numerically computed trajectories perturbed at the 20th and 40th touchdown. When
k1 = 1000 N/m, the system asymptotically approaches the same equilibrium gait after each
perturbation. When k1 = 1500 N/m, the system switches between equilibrium gaits when
perturbed.
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Figure 7: Body state at touchdown as k1 → k2.

k1 (N/m) Average maximum roll (degrees) Number of samples
300 4.1 ± 0.4 42
450 2.5 ± 0.6 42
600 1.9 ± 0.5 68

Table 1: As k1 → k2, EduBot’s roll decreases. Though the decrease is not enormous, it is
statistically significant.

5.1 SIMULATION FORCES AND TRAJECTORIES

Figure 8 clearly demonstrates that the average maximum roll at equilibrium decreases as k1 →
k2.

Figure 9 demonstrates that individual leg ground reaction forces equalize as k1 → k2. In
the model, if k1 = k2, then the force patterns would be precisely equal between the legs.

5.2 ROBOT FORCES AND TRAJECTORIES

Table 1 contains the result of averaging the single stride maximum roll EduBot exhibits over a
series of experiments. Though the trend is not overwhelming, it does appear that roll decreases
as k1 → k2.

Figure 10 demonstrates that that the forces exerted on the ground by each leg appear to
equalize as k1 → k2, however, this data is preliminary.
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Figure 8: Simulated roll trajectory as k1 → k2.

Figure 9: Simulated individual leg forces. We present the data as we would record it experi-
mentally (see Figure 10) for ease of comparison; the first and third ground strikes are identical
here.
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Figure 10: Experimental individual leg forces. From left to right, the three main peaks corre-
spond to the front, middle, and back legs striking the force plate.

6 DISCUSSION

The major contributions of this work are the new analytical model for EduBot’s roll and the
correspondence between numerical and experimental results that suggest one way to eliminate
the robot’s roll. This is significant for several reasons. First, despite the success of simple
models in describing the sagittal-plane and lateral-plane dynamics of legged locomotion, little
work has been put into the analysis of rolling dynamics. Second, since we were able to use this
model to predict the effect of a parameter variation in the physical system, we have provided
the initial evidence that this model captures something fundamental about the rolling dynamics
exhibited by EduBot.

The significance of producing an experimentally valid simple mathematical description of
a certain aspect of legged locomotion is subtle. The immediate utility of such a model is that
it provides an intuitive framework to think about legged creature’s rolling; we are justified in
thinking of rolling motion independent from other aspects of a robot’s gait, and we understand,
qualitatively, the effect of physical parameter variations on roll. In farther-reaching terms, this
work could motivate the design of controllers to manipulate rolling in legged robots by providing
a plant model, or could inform the design of legged robots themselves by giving insight into the
predominant physical processes that lead to rolling.

7 RECOMMENDATIONS

We succeeded in posing the analytical problem of identifying equilibrium gaits in the con-
servative model using a formal mathematical framework, but we did not make any progress
toward actually identifying such fixed points. Future work should therefore be concentrated
on producing analytic results in the conservative model. A similar analytical statement can
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be constructed for the damped model, and it would be an even more laudable goal to produce
analytical results in that case, though we consider this to be a more difficult problem.

We elected to investigate the effect of one parameter variation on roll; this restriction was
motivated primarily by the desire to produce an experimentally-verifiable experiment from the
model in the time available. There are many more avenues of inquiry that could be taken up
in the model, however, like studying the effect of using different energy-addition schemes in the
damped model and designing controllers to stabilize the equilibrium gaits of the conservative
model. These investigations would likely yield useful insight into how to design and control
legged robots.
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A SIMPLE POINCARÉ MAP PROBLEM

When confronted with the task of discovering the long-term behavior of a dynamical system,
one approach is to look at the sequence of points where the system intersects a Poincaré
section [14]. Essentially, a Poincaré section Σ is a surface of codimension 1 embedded in state
space. By studying the action of the system on Σ, we can glean information about the system’s
long-term behavior.

We present here a solution to a simple linear dynamical system problem which utilizes a
Poincaré section. This exposition is intended to motivate the analysis we later set up to apply
to the conservative model for EduBot’s rolling.

DEFINE

x =

[
x1

x2

]
, ẋ = (σI + ωJ)x, I =

[
1 0
0 1

]
, J =

[
0 1
-1 0

]
,

q =

[
ρ
θ

]
=

[ √
x2

1 + x2
2

tan−1(x1, x2)

]
, Θ = {(ρ, θ) ∈ R× S1 | θ = 0}.

(We adopt the convention that θ = tan−1(y, x) implies x = cos θ, y = sin θ.)

Define a Poincaré map P : Θ → Θ in the following way: if x(t, x0) solves the differen-
tial equation5 and Θ(x(τk)) = 0 with ρ(x(τk)) = ρτk

, then P(ρτk
) = ρτk+1

, where τk+1 =
mint>τk

{θ(x(t)) = 0}.

So, intuitively, if x1 lies along the y-axis and x2 along the x-axis, Θ is the set of points where
a solution to the differential equation crosses the positive x-axis, and P maps such points onto
the next such point in (temporal) order of occurrence.

FIND An explicit formula for ρτk+1
= P(ρτk

).

GENERAL SOLUTION The general solution to the differential equation is given by

x(t, x0) =

[
x1(t)
x2(t)

]
=

[
eσt(x1 cos(ωt) + x2 sin(ωt))

eσt(−x1 sin(ωt) + x2 cos(ωt))

]
, x0 =

[
x1

x2

]
. (30)

STRUCTURE OF Θ Given θ = tan−1(x1, x2), it is clear that θ = 0 ⇐⇒ x1 = 0, x2 > 0.
But

x1(t) = 0 ⇐⇒ x2 sin(ωt) = −x1 cos(ωt) ⇐⇒ tan(ωt) = −x1

x2

, (31)

x2(t) > 0 ⇐⇒ −x1 sin(ωt) + x2 cos(ωt) > 0. (32)

5In this case, we find it convenient to drop the x0 argument and simply call the solution x(t).
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The condition in eq. 31 gives two possible choices for ωt which lie in opposing quadrants (i.e.
I and III or II and IV); the condition in eq. 32, when taken with the result from eq. 31, selects
one of these two choices (the choice where sin(ωt) < 0).

Note that since sin(ωt) and cos(ωt) are 2π
ω

-periodic, a solution τ0 determined from eqs. 31
& 32 gives rise to an entire sequence of solutions of the form {τk = τ0 + 2π

ω
k | k ∈ N}. Note

also that consecutive terms in this sequence provide the proper temporal ordering on events in
Θ, by which we mean τk+1 = mint>τk

{θ(x(t)) = 0}.

FINDING P(ρτk
) We are nearly finished. We have the sequence of times corresponding to

points in Θ, so all that remains is to evaluate ρ at the (x1, x2) coordinates corresponding to
those times.

First, note that an event in Θ requires x1 = 0, so ρτk
= x2(τk). Next, note that by

construction tan(ωτk) = −x1

x2
, sin(ωτk) < 0, so

sin(ωτk) =
−x1√
x2

1 + x2
2

, cos(ωτk) =
x2√

x2
1 + x2

2

. (33)

So by combining eq. 33 with eq. 30, we have

ρτk
= x2(τk) = eστk

(
x2

1 + x2
2√

x2
1 + x2

2

)
. (34)

Now, recognizing that the next event occurs at time τk+1 = τk + 2π
ω

,

ρτk+1
= P(ρτk

) = eσ(τk+ 2π
ω

)

(
x2

1 + x2
2√

x2
1 + x2

2

)
= e

2πσ
ω ρτk

, (35)

and, more generally,

ρτk+n
= P ◦ · · · ◦ P(ρτk

) = Pn(ρτk
) = e

2πσ
ω

nρτk
. (36)

SYSTEM BEHAVIOR Assuming at least one of the initial conditions is nonzero, choices
of σ and ω determine the qualitative behavior of the system.

If σ = 0, the system moves in a circle. If σ < 0, the system spirals toward the origin. If
σ > 0, the system spirals toward infinity. Note that these qualitative statements are reflected
in eq. 36, and given precise analytical meaning—this is the primary utility of such a solution.

If ω = 0, the system moves along a ray: toward infinity, toward the origin, or remaining
stationary, depending on the choice of σ. In this case, the conclusion that the system’s dynamics
are 2π

ω
-periodic is invalid, and either Θ ≡ ∅ or Θ ⊂ R, depending on the choice of initial

conditions.
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B FORCE PLATE

We measure the ground reaction forces for EduBot using a commercially-available force plate [17].
The force plate uses Hall Effect sensors to measure the net force F = (Fx, Fy, Fz)

T and moment
M = (Mx, My, Mz)

T applied to the center of pressure of the surface.

The plate either outputs analog signals which can be combined to compute F and M or a
digital signal which can be used with proprietary software to save the net force and moment to
an ASCII text file at 12 bit resolution and up to 200 Hz.

Given F and M, we wish to find the net z-axis torque Tz applied to the plate. From [18],
we know that

M = (x− a, y − b, τ − c)× F + (0, 0, Tz), (37)

where (a, b, c) is the actual origin for the force plate (given by the manufacturer’s calibration
matrix ), τ is the thickness of whatever padding is added to the surface of the force plate, and
Tz is the net torque applied to the plate about the z-axis.

Writing this equation in matrix form, we have

M =

 Mx

My

Mz

 =

 0 −(τ − c) y − b
τ − c 0 −(x− a)

−(y − b) (x− a) 0

 Fx

Fy

Fz

+

 0
0
Tz

 , (38)

so we arrive at

x = −My + (c− τ)Fx

Fz

+ a, (39)

y =
Mx − (c− τ)Fy

Fz

+ b, (40)

z = τ, (41)

Tz = Mz − (x− a)Fy + (y − b)Fx. (42)

So now given F and M from the force plate, we can extract the center of pressure and the
net force and torque exerted by the robot.

C NUMERICAL METHODS

We performed numerical simulations in MATLAB [19] using the ode45 numerical solver with
RelTol = 1× 10−8, AbsTol = 1× 10−6. We computed equilibria in the conservative model to
within 1% in all coordinates unless otherwise specified. Vector field plots contain 30 subdivisions
in each coordinate; trajectories that fail to produce a touchdown event are omitted. We used
ode45’s built-in event function feature to implement the hybrid dynamics of the model.
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D TRAJECTORY MEASUREMENTS

Robot trajectories were recorded using a motion-capture system. The system treats EduBot
like a rigid body in R3, recording the robot’s position and three-axis rotation at roughly 120
Hz with sub-millimeter accuracy. Occasionally the motion capture system loses track of the
robot for one to five samples; in this case, we interpolate linearly across the lost samples. We
then apply a 5-sample median filter to smooth jump discontinuities in the data that appear to
be introduced by noise.
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