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Organic Field-Effect Transistors

•Doped Si bottom gate and SiO2 dielectric layer
•Pentacene semiconductor
•Self-Assembled Molecules on source and drain for ambipolar characteristics
•Mobility around 0.25cm2/Vs 
•Maximum drain currents near 30μA
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Background

•OFETs hold great promise for the future of brain-computer interfaces
•Conformal
•Small feature size 
•Greater neural selectivity
D i  l d di l   f  h  h  i d•Devices placed directly on surface rather than wired

•Current techniques•Current techniques
•3mm diameter sensors
•1cm spacing between sensors
•Around 150 000 neurons/mm2Around 150,000 neurons/mm2
•Bulky wire arrays attaching to machinery

J.J. Van Gompel, G.A. Worrell, M.L. Bell, T.A. Patrick, G.D. Cascino and 
C. Raffel et al., Intracranial Electroencephalography with Subdural Grid 

Electrodes: Techniques, Complications, and 
Outcomes, Neurosurgery, 63 (2008) 498–505.
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What needs to be done 
•Amplification

•Brain signals are very low voltage, order of microvolts
•Need to amplify these signals for use in electronics
•Organic transistors can be made in amplifying configuration
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Wh  d   b  d  What needs to be done •Patterning via holes
•Brain is in aqueous environment
•Parylene can serve as encapsulanta y e e ca  se e as e capsu a t
for devices
•Parylene can also act as a dielectric 
between transistor and sensor
•Electrodes must be placed from 
sensor in brain to gate
•Holes must be etched through 
parylene and transistor layers to 
make this connection
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FET Amplifiers

Gate

Source

Drain

•Transistors in amplifying topology can generate “small signal” gain
•DC voltage applied to gate
•Transistor, in saturation, draws drain current
•Small perturbation of gate voltage (AC signal) causes corresponding small 
change in drain current
T k  d t  f thi  d i  t ill ti•Take advantage of this drain current oscillation
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•Source is grounded
-50V

Source is grounded
•Drain is connected to power supply by resistor
•Small drain current perturbation now causes a 
small voltage signal at the draing g
•Amount of gain is determined by the device 
characteristics, resistance, and DC biasing
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Common Source Amplifier Calculations

|Gain| = gmRd = μCox(|Vgs| - |Vt|)Rd
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DC Analysis Gain Predictions
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Small Signal Gain Results
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•Used 1Vpp small signal input at 15Hz
•About half as much as calculated; only slightly less than DC prediction
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Frequency Response
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•-3dB point near 35Hz
•Higher frequencies severely limited gain due to high gate capacitance
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•Rolls off greater than -20dB/decade
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Further Investigation

•Why calculations were off (determining how mobility and threshold voltages 
change with gate voltage)
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Patterning Methods

•Parylene was etched using oxygen plasma 
•Glass and silicon substrates measured well on profilometer
•100W  500mTorr showed a rate of 0 2μm/minute•100W, 500mTorr showed a rate of 0.2μm/minute
•Kapton samples gave no decent measurements

•BCB and spin-on-glass were etched with SF6BCB and spin on glass were etched with SF6
•Spin-on-glass did not exhibit etching with O2
•SF6 etching did not give any consistent resuslts
•BCB results could not yet be measuredy
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Further Investigation

•Using polyimide to avoid SoG and Kapton etching problems

•Attempt etching using photoresist in hole pattern  then test with deposited Attempt etching using photoresist in hole pattern, then test with deposited 
electrode

H. Kawaguchi , T. Sakurai, High Mobility of Pentacene Field-Effect Transistors with Polyimide Gate Dielectric Layers, Appl. Phys. 
Lett., 84 (2004) 3789-3791.
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