Developing Communication between the Leg and the Body of EduBot

Advisors: Daniel E. Koditschek Jonathan Clark Kevin Galloway Bill Mather

By Mulutsga Bereketab

Motivation and Goal

Motivation:

 Add flexibility and efficiency to EduBot

Goal

 Enable Edubot to change the stiffness of its leg while on the move

The Approach

- Develop communication between the robot and the leg for data acquisition and relaying commands
- Control the movement of the slider, which controls the stiffness of the leg

Communication Schematic

Microcontroller (PIC18F2680)

- Controls what kind of data is sent and how fast
- Can be programmed in C Language
- Generates a Pulse
 Width Modulation
 (PWM) to control the speed of the motor

Infrared Data Association (IrDA)

- A form of wireless communication
- Built in receiver and transmitter
- Small Dimensions
 (1.6mm H, 7mm W,
 2.8mm D)

Communication Prototype

LEG

Two Communication Protocols

- The body of the EduBot initiates the communication
- First Protocol:
 - The body asks the leg for data
 - Slider Position (1 Byte)
 - Stress on the Leg (1 Byte)
 - The time the leg touches the ground (1 Byte)
 - The time the leg leaves the ground (1 Byte)
 - The body gets 4 bytes of information back from the leg

Two Communication Protocols Cont.

- Second Protocol
 - The body commands the leg to change the slider position
 - The leg in return positions the slider as specified by the body

Slider Control Schematic

Thanks

- Daniel E. Koditschek
 Jonathan Clark
 Kevin Galloway
 Bill Mather
 Haldun Komsuoglu
- Kod*lab Colleagues
- Jan Van der SpiegelSunfest Program