
 109

DESIGN OF AN ARTIFICIAL COCHLEA USING DIGITAL
FILTERS ON A FIELD-PROGRAMMABLE GATE ARRAY

NSF Summer Undergraduate Fellowship in Sensor Technologies
Aslan Ettehadieh (Electrical Engineering) – Morgan State University

Advisors: Dr. Jan Van der Spiegel and Dr. Paul Mueller

ABSTRACT

Traditional methods of speech recognition have very limited complexity and impose
considerable grammar constraints. Today’s systems have critical problems understanding
different voices and do not have robust vocabularies. This paper describes research on a
biological method for speech recognition that models an artificial cochlea using digital
filters. The specific part of the cochlea of interest here, the basilar membrane acts as a
collection of bandpass filters that will be mimicked to develop an artificial digital
cochlea.

This digital cochlea will be implemented on a single Xilinx field programmable gate
array (FPGA). The FPGA chip is on a board that contains both an analog to digital (A/D)
converter and a digital to analog (D/A) converter. The A/D converter converts the speech
signal into a digital representation; the D/A converter converts the digital signal back into
its original analog form. The board also includes a lowpass anti-aliasing filter to reduce
the noise and keep only the range of human speech frequencies approximately 100 to
3500 Hertz. The range of frequencies will be divided into 16 bands. The FPGA chip will
contain 16 programmable bandpass filters to split up the speech signal into separate
frequency components that can be used to determine phonemes, the simplest unit of
speech. Phoneme-level recognition will improve the speed and accuracy of speech
recognition.

The final product is expected to be cost efficient and to be implemented on a single chip.
The digital cochlea will be used in conjunction with a neural network that will extract
features and phonemes from speech signals.

1. INTRODUCTION

Speech recognition technology has become more popular and has advanced considerably
over the past several years. Recognition software has been integrated into many
applications. For example, Eloquently Stated, a software package for medical
professionals, adds speech recognition to manage patient records and medical histories,
and creates comprehensive referral source databases. Another application of speech
recognition technology is language translation. Lernout & Hauspie has released a
software package that can translate to and from English and: Spanish, German, French,
Italian, Portuguese, and Japanese. [1]

 110

Speech recognition in traditional methods has limited complexity and artificial grammar
constraints. The importance of our speech recognition research is to have a design that is
more robust in its ability to recognize speech. Drawing on a biological method for
speech recognition, this research will model a design after the basilar membrane in the
cochlea of a human ear.

There are three major divisions of the peripheral auditory system: the outer ear, middle
ear, and inner ear. Without great detail the outer and middle parts of the ear are
responsible for transforming and transporting sound to vibrations to the inner ear. The
major component of the inner ear, the cochlea, cochlea converts mechanical vibrations
caused by sound waves into electrical impulses. The cochlea is a coiled tube that looks
like a snail and is filled with fluid. The basilar membrane is located about halfway down
the cochlea’s length and within the cochlear fluid. It is held to the cochlea by bone. A
compressed sound wave is generated in the cochlear fluid by the vibrations of the
eardrum, which result from movement where the middle ear is connected to the inner ear
by way of the oval window. The compressed sound wave generated in the cochlear fluid
causes an up-and-down vibration of the basilar membrane. Along the basilar membrane
are thousands of inner hair cells that, when simulated by vibration “fire” short electrical
pulses in the nerve fibers. The nerve fibers are bunched together to form the auditory
nerve. When these electronic pulses travel along the auditory nerve, they find their way
to the higher levels of the auditory processing in the brain. This is where the brain
perceives what is heard as sound. [2]

When the ear is stimulated by sound, different regions of the basilar membrane respond
to different frequencies that occur in a sort of “tuning” of frequencies. These different
regions can be translated as a bank of cochlear filters along the basilar membrane. The
cochlea consists of thousands of filters. Being practically for today’s limitations, a
design on a single field-programmable gate array (FPGA) could not hold enough memory
to have a bank of thousands of filters working properly. The University of Pennsylvania
built a neural network that can extract features and phonemes from speech signals. This
neural network was designed to work in conjunction with a digital cochlea with a bank of
16 filters. The design described in this research is limited to the maximum memory
capacity of the FPGA and leads to 16 separate filters.

The frequency range of human speech is approximately from 100 to 3500 Hertz. Since
the design can have only 16filters, 16 center frequencies have been chosen to cover the
range of human speech.

The digital cochlea will be downloaded into an FPGA and implemented into a neural
network. This neural network will investigate phonemes in order to facilitate the later
design of a system that can recognize these phonemes.

 111

2. BACKGROUND

This project, among many other attempts since 1998 at the University of Pennsylvania,
has been done primarily because of the doctoral research of Ahmed Ali. Ali’s
dissertation Auditory-Based Acoustic-Phonetic Signal Processing for Robust Continuous
Speech Recognition, postulates a biological approach to speech recognition. He proposes
to replicate cochlea-like filtering behaviors that will be able to recognize more
spontaneous speech than can be recognized by current systems, which have very limited
perplexity and artificial grammar constraints. [3]

Cheng and Edelman, attempted to implement 36 analog programmable cascading filters
on a Xilinx FPGA chip. However, their design, which required roughly 80,000 gates,
was too complex for the single proposed chip, which contained only 5,000 gates. [4]

Lee and Lee [5] attempted the first design of a 16-channel filter system. Because of time
limitations, their designs were only simulated and not implemented on an FPGA chip.

Chen, Gaw, and Raskob continued the project based on Lee and Lee’s work. They were
able to download a 16-channel first-order bandpass filter system on a single FPGA.
Their design showed only minimal promise in the eleventh filter. Time constraints left
them unable to optimize their system design.

Some related work has been conducted outside the University of Pennsylvania. Hinck’s
unsuccessfully attempted to implement a design consisting of a 6 to 10 channel digital
cochlea filter on an FPGA. [6] Watts built a functioning real-time, high-resolution, 240-
tap, 10-octave, 44 kHz-sampling cochlear model on multiple FPGAs. [7]

3. STRATEGIC PLAN

This research will consist of four general stages. The first stage is to research current
understanding of the biology of the human cochlea and to become familiar with software
and hardware components that will be needed to complete the research. The second stage
is to design models using software packages. Simulation of these designs will be
necessary to ensure accuracies in the filter designs. The third stage is to implement the
architectural design to VHDL code and download it to the FPGA. The last stage is to test
the FPGA to compare simulations with actual real-time testing.

3.1 Proposed Approach

The main goal of this project is to create one working model of an FPGA with digital
filters that mimic the basilar membrane of the cochlea. This FPGA chip must be
optimized to a satisfactory performance level where the center frequency of a certain
filter does not resonate in a neighboring filter. Filter designs will be constructed and
tested on a software level. When desired results are reached, the filters will be
downloaded and tested at a hardware level. Then, the filters will again be optimized
further, downloaded again into the FPGA, and tested.

 112

3.2 Hardware And Software Requirements

Much of the hardware and software was made available by past attempts at the project.
New licensing was necessary to use software that had expired. Cables were previously
made to connect to and from the board. The co-axel cables were connected to audio
jacks had been attached with the wrong polarities. Polarities were corrected and were
soldered to permanently fix the problem.

3.2.1 Hardware Requirements

The FPGA chip, XCV300, and the processing board, XSV300, were both already
available. The board was tested with sample inputs to ensure proper working conditions.
A sample test provided with the board, called GXStest, for unknown reasons gave the
error that the board was not properly functioning. A zip file was obtained from XESS
Corporation called loop-simple.zip. It contained a file named loopv300.bit that was used
to test the input versus output of the board. This file proved that the board would
function properly for the necessary tasks. [8]

3.2.1.1 FPGA Chip

The Xilinx Corporation manufactures a series of Virtex processing boards for FPGAs.
The exact board and chip were predetermined because they were the only hardware
components available with an audio compatibility and built-in A/D converter and D/A
converter. The specifications are shown in Table 1. More specifications on this product
can be found on the AK4520A datasheet provided by the Xilinx Corporation.

 XCV300 Specifications
System Gates: 322,970

 CLB Array 32 x 48
 Logic Cells: 6,912
 Maximum Available I/O: 316

 Table 1, XCV300 specifications

3.2.1.2 Virtex Processing Board

The board is described in Section 4.8.1.1. The board provides an environment for the
XCV300 chip that makes it ideal for testing. The XCV300 chip is directly mounted onto
the board, as shown in Figure 1.

 113

Figure 1: XSV 300 prototyping board

3.2.2 Software Requirements

There are three main manufacturers of software needed for this research. The
MathWorks Corporation provides Matlab R12.1, Simulink, and DSP Blockset. The
Xilinx Corporation provides System Generator and ISE. XESS Corporation provides
XSTools. Table 2 outlines the software packages that will be used in the project.

Software Purpose
MathWorks Matlab Holds the environment needed to run Simulink and
 the DSP Blockset.
MathWorks Simulink Provides a library of blocks that represent

commonly used functions for modeling, simulating,
and analyzing dynamic systems.

MathWorks DSP Blockset Provides the ability to simulate signals for testing.
 Provides digital design blocks for generating filter
 coefficients.
Xilinx System Generator Translates the Simulink model into VHDL code.
Xilinx ISE Compiles the VHDL code into a bitstream file.
XESS XSTools Downloads the bitstream file to the FPGA.

Table 2, Software packages with brief descriptions.

3.2.2.1 Mathworks Matlab R12.1 (v6.1)

Matlab is a software package used for mathematical computation and visualization. It
provides an environment for technical computing. Matlab’s open architecture makes it

 114

easy to explore data and create algorithms. Matlab holds the environment for Simulink
and the DSP Blockset.

3.2.2.1.1 Mathworks Simulink (v4.1)

Simulink provides an interactive tool for modeling, simulating, and analyzing dynamic
systems. Simulink is a library of blocks that represent many commonly used functions.
It provides the platform for Xilinx System Generator blocks to design systems for
FPGAs. The license file need for Simulink and DSP Blockset packages had expired, and
an updated license was purchased. Several working days were lost in the interim.

3.2.2.1.2 Mathworks Dsp Blockset (v4.1)

The DSP Blockset is an extension to the Simulink package that works in the Simulink
environment. The DSP Blockset has the ability to simulate signals to test models. Key
features include fast Fourier transform (FFT) and its inverse, short time FFT; multi-rate
signal processing; FIR and IIR Direct Form II Transpose filters; adaptive filters; and
digital filter design blocks for generating filter coefficients.

The DSP Blockset was used for the actual filter modeling and generating filter
coefficients. Figure 2 shows a graphical user interface (GUI) for the design of filters.
This particular model is a second-order Butterworth bandpass filter with a sampling
frequency of 16000 Hertz, band start of 2705 Hertz, and band stop of 3095 Hertz. This is
a second order Butterworth filter.

 115

Figure 2: Digital filter design block.

The ‘Analysis’ option, located in the menu bar of the window, allows the user to view
different items in the area presently marked ‘Filter Specifications’. Figure 2 shows a
diagram of the specifications of the filter to be designed. The magnitude response can
also be viewed, as shown in Figure 3. Figure 4 shows the filter coefficients, from which
we extract the coefficients to be used later.

Figure 3: Digital filter design block: magnitude response.

 116

Figure 4: Digital filter design block: filter coefficients

3.2.2.2 XILINX

The Xilinx Corporation provides software and hardware that enable the programming of
logic to devices like FPGAs.

3.2.2.2.1 XILINX System Generator (v2.1)

The System Generator allows a conceptual architectural design to be created with the
MathWorks software packages to an actual Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language (VHDL) code.

3.2.2.2.2 XILINX ISE (v4.2i)

The VHDL code created by the System Generator can be imported into the ISE
environment. The ISE package makes an actual implementation of a bitstream file that
can be downloaded to the FPGA.

3.2.2.3 XESS XSTools

With the use of the board’s PC parallel port, XSTools downloads the bitstream file to the
FPGA. XSTools provides features to test the functionality of the prototyping board.

3.3 Filter Design

The neural network that will be used was designed for 16 inputs. Bandpass filters are
used because they tell us if a signal contains a frequency component with a specific
frequency range. Using a bank of 16 such bandpass filters provides information about
the frequency components in the signal. These 16 bandpass filters are all infinite impulse

 117

response (IIR) filters. IIR filters are preferred to finite impulse response (FIR) filters
because IIR filters can achieve a given filtering characteristic using less memory and
calculations than similar FIR filters. The main drawback of using an IIR filter is that it is
slower than an FIR filter to implement using fixed-point arithmetic.

A design of a single Xilinx chip has been implemented to have the 16 bandpass filters.
Lowpass and highpass filters are to be optimized. Table 3 gives an example of the center
frequency and a range of frequencies for the bandpass filters

 Center Frequency (Hertz) Frequency Range of Bandpass Filter (Hertz)
 (3dB-points)

150 125 – 175
 250 225 – 275
 350 325 – 375
 450 420 – 480
 570 530 – 605
 700 655 – 745
 840 790 – 890
 1000 940 – 1060
 1170 1105 – 1235
 1370 1285 – 1455
 1600 1505 – 1695
 1850 1745 – 1955
 2150 2005 – 2295
 2500 2345 – 2655
 2900 2705 – 3095
 3400 3145 – 3655

Table 3, Center frequencies and their corresponding frequency ranges.

Fixed-point arithmetic will be used and manipulated to optimize the number of bits used
while trying to keep the performance level close to full precision.

Matlab allows users to select the filter design method. All of the filters used in this
project are Butterworth. In Butterworth filters the magnitude response is maximally flat
in the passband and monotonic overall.

3.3.1 Filter Structure

Matlab is used to generate the necessary filter. Instead of the traditional direct form II
structure, Matlab generates coefficients for the direct form II transpose structure using the
general equation shown below.

 118

The general diagram for the direct form II transpose general equation follows in Figure 5.

Figure 5: Direct form II transpose block diagram.

Different structures are to be considered over the simple direct form structure because
even thought they are theoretically equivalent they may behave differently when
implemented with finite numerical precision. [9] The direct form II transpose equation
is preferred here because it cannot overflow “internally” in two’s complement fixed-point
arithmetic. The filter models are all designed in two’s complement fixed-point arithmetic
that implies the need for the direct form II transpose structure.

Fixed-point numbers are not as precise as floating-point numbers, but fixed-point
hardware is much more cost effective, allowing a significant saving in hardware.

3.3.2 Filter Type

Of the many different types of filters available, only the lowpass, highpass, and bandpass
types are needed for this research. Lowpass filters pass low frequencies and attenuate
higher frequencies. Highpass filters do the opposite. Bandpass filters pass a limited
range or band of frequencies, and attenuate frequencies above and below this range.

3.3.3 Filter Order

The order of a filter indicates the sharpness of the filtering or the slope of the rolloff
curve. The higher-order filter designed, the sharper the filtering. A second-order filter
provides much greater precision because of the use of more coefficients. The downside
is that it uses more bits and therefore requires more memory in the system. Filters can be
designed with the use of Simulink and DSP Blocksets. Figure 6 shows the block diagram
of a first-order bandpass filter with center frequency of 2900 Hertz. Figure 7 shows a
block diagram of a second-order bandpass filter with the same center frequency. It is
apparent that the second-order filter has more blocks that would require more bits of
memory.

 119

Figure 6: First order bandpass filter block diagram

Figure 7: Second order bandpass filter block diagram

Adder (AddSub) blocks have only two inputs and one output. In the second-order filter,
two adders must be joined together to allow three inputs to be added. To date, the
software package’s adders are able to add only two inputs.

 120

3.3.4 Filter Diagrams

A few major designs proposed for comparison. A standard 16 bandpass filter was first
drafted, the simplest of the designs. A simple series of four bandpass filters is shown in
Figure 8.

 A modified version of the 16 bandpass filters was also designed. This model is a chain
of 16 lowpass filters that the bandpass filter taps off of. The cut-off frequencies of the
lowpass filters are the same as those of the bandpass filters (see Table 3). This model
decomposes a broadband signal into a collection of successively more band-limited
components by repeatedly dividing the frequency range. In comparison to the basic 16
filters, this model gives an increase of one order higher to one side of the bandpass filters,
resulting in a steeper roll-off. Therefore, if a bandpass filter was of the first-order, the
bandpass would be theoretically equivalent to a first-order lowpass and first-order
highpass. If lowpass filters were added before the bandpass, the design could be
interpreted as a second-order lowpass and a first-order highpass. The left column of
filters represents the lowpass filters and the right column represents the bandpass filters.
A design of four lowpass to four bandpass filters is shown in Figure 9.

The last major design is the symmetric basic tree structure design. The tree structure
decomposes both the high and low frequency sub-bands with lowpass and highpass filters
at each level until the range of frequencies fit the desired range of the 16 bandpass filters.
A standard four bandpass tree structure is shown in Figure 10.

Figure 8: Basic filter diagram

 121

Figure 9: Lowpass to bandpass filter diagram

Figure 10: Tree structure filter diagram

Because of time constraints, most of the research has focused on the basic 16 filter
design. Some results were simulated from the tree structure and the lowpass to highpass
structure, but it was too early in the research and many of the software “bugs” had not
been fixed. No results from this research are reported here.

3.3.5 Filter Frequency Range

Because of the limit on the use of bits, the system design will still have to be optimized.
In order to keep a certain frequency from resonating in more than one filter, filters will
have to be optimized. If memory does not permit the system to increase the order of the
filter, a sacrifice can be made by decreasing the range of frequencies around the center
frequency of each filter. This will reduce the magnitude of the intersection between
neighboring filters, which in turn produces a decrease of overlap between neighboring
filters.

 122

3.4 SUB-SYSTEM DESIGN AND IMPLEMENTATION

The original goal was to have a working model of a 16-channel bandpass filter model of a
digital cochlea. The goal was hindered by the discovering of many errors in designs,
both in the prior research methods and current research methods. Errors were found in
the clocking design, in adder blocks of the filter design, in binary point arithmetic
calculations, and in generating VHDL code with the use of a multiplexer. The filter
design is complicated by the need to use the correct number of bits to arrive at a level of
precision able to accurately filter the desired range of frequencies while maintaining the
memory capacity of the FPGA. The filters with lower frequencies need more bits
because without high accuracy in the coefficients, primary the numerator coefficients, the
coefficients would seem to be the same. An example of the difference between
coefficients is described in Table 4. If two coefficients, 0.009722345450232430 and
0.009722345450233991, both use insufficient number of bits to retain the precision, both
numbers could represented as 0.009722345450230000 and there would be no difference
seen. Otherwise if two coefficients, 0.0574428650970612 and 0.071258915652282401
use the same number of bits for precision the numbers could be seen as
0.057442865097000 and 0.071258915652280000; and the differentiation still can be
made between the two coefficients.

Center freq. Bandpass range Numerator 1 (b1) coefficient
250 225 – 275 0.009722345450232430
350 325 – 375 0.009722345450233991
2500 2345 – 2655 0.0574428650970612
2900 2705 – 3095 0.071258915652282401

 Table 4, Coefficient precision comparison (sample frequency of 16 kHz).

The second and third filter coefficients are very similar and it is crucial to use enough bits
to differentiate the two. The similarity between the first and second filter coefficients is
even greater. The numerator 1 (b1) and numerator 3 (b3) are equal except one is negative
and the other positive. Through trial and error, b3 was shown to have the greatest need
for bits than b1. Coefficient b1 needs more bits than the denominator coefficients. The
denominator coefficients seem to follow the same trend, with a3 needing more bits than
a2, and so forth. See Section 3.3.1 to visualize the numerator and denominator
coefficients.

3.4.1 Audio Codec And Clocking

The neural network was designed for a sampling frequency of 16000 Hertz. The system
has to be designed using the same sampling frequency if the signal processing is to be
done accurately. The filter coefficients were generated with the 16 kHz sampling
frequency. The undivided XSV300 board’s clock runs at 100 MHz. The XSV300 has a
clock divider that allows the clock to be divided by 2, 3, 4, etc. A clock frequency of
33.3 MHz was selected.

 123

The Stereo codec on this board requires three control clocks: LRCK, SCLK, and MCLK.

LRCK is the signal that selects the left (0) or right (1) channel. This signal should be the
same as the sampling frequency. Defined in the codec datasheet (Appendix ###) for the
codec, the minimum frequency allowed for the LRCK is 16 kHz.

SCLK is used to synchronize the serial bit stream. There must be 32 cycles for each of
the two channels in the sample, which means the SCLK must be set to 64 times the
sampling frequency.

MCLK is the master clock, which is used to synchronize the internal operations of the
codec. This board requires that the MCLK be set to 256 times the sampling frequency.

The following are the settings desired:

 Divisor 3
 Clock frequency provided 33.33 MHz
 MCLK (CLK divide by 8) 4.167 MHz
 SCLK (CLK divide by 32) 1.042 MHz
 LCLK (CLK divide by 2048) 16.28 KHz

A clock division macro was developed using T-flipflops in sequence. This clock divider
was designed by Lee and Lee and is shown in Appendix C. Their codec design is shown
in Appendix D. [5]

The codec specifies that the rising edge of SCLK should not occur at the same time as the
LRCK clock edge. This required a slight modification in the design of the clock divider
to invert the SCLK signal.

When the bitstream of filters was downloaded into the FPGA the data shown on the
oscilloscope was not stable and did not correspond to the discrete output. The clocking
devised by Lee and Lee was investigated and found to be done incorrectly. The LCLK
that had match the sampling frequency of 16 kHz was producing a signal of 8 kHz. The
clocking structure created by Lee and Lee is shown in Figure 11. The corrected clock
with LCRK at 16 kHz is shown in Figure 12.

 124

Figure 11: Clock created by Lee and Lee.

Figure 12: Corrected clocking structure with LCLK at 16 kHz.

 125

3.4.2 Shift Register Operations

Only two operations involved the shift register: a serial-to-parallel conversion and a
parallel-to-series conversion. (These were designed by Chen, Gaw, and Raskob [4].) The
serial-to-parallel conversion takes the single bitstream and outputs a slice of bits to the
filter. The macro designed is a 32-bit register made of 32 D-flipflops in sequence. While
the macro outputs a 32-bit bus, only the selected slice of bits is passed to the filter and the
remaining bits are simply dropped. The slice of bits was first done with 8 bits and then
with 16 bits. The 16-bit slice proved to be a more desirable option. The difference
between an 8-bit slice and a 16-bit slice will be shown in Section 3.4.5.

3.4.3 System Errors And Their Solutions

There were many errors in simulating models using the shift registers. Lee and Lee
simulated results mainly with an 8-bit slice with an output of 8 bits in the filter that did
not give errors. They used 8 bits across the system in order to keep the number of bits
minimal. When more bits had to be added in the system, there was no documentation of
the resulting errors that resulted. Matching the number of bits that were sliced to the last
output bits of the subsystem solved the errors. Figure 6 and Figure 7 in Section 3.3.3
show a model of a subsystem. In this subsystem the last AddSub would have to output
the same number of bits as the slice. Also, the last AddSub needed to carry a sample
period of –1, which means it inherits the first known input period.

Another error (ERROR: NgdBuild:604) was encountered when generating the VHDL
file. When generating more than one of the 16 outputs, a multiplexer is needed. This
multiplexer gave a puzzling error message that was stored in a file called coregen.log.
This file gave an error in the cores of different blocks, usually multipliers. This error was
solved by generating with the option of “Everywhere Available” under the Xilinx Core
Generator. This problem was not encountered again after that change was made.

3.4.4 Binary Point Arithmetic

The accuracy of the filter is determined by three main options. The first is the number of
bits that will be selected to slice the data that goes into the system. The second is the
precision of the bits selected for certain blocks. Blocks that allow the user to select the
number of bits used to determine the precision are AddSub and multipliers. The last
option is the selection of the right binary point position.

In a design, delay and adder blocks are usually simple, but multipliers may be cause for
concern. If the option of “full precision” is not selected then the user must select the
number of bits of the coefficient and its binary point position. Xilinx defines full
precision in the block as having sufficient precision to represent the result without error.
When selecting the binary point, the user is selecting how many bits are to the right of the
binary point (the size of the fraction). The binary point position must be between zero
and the number of bits that the user selected for the coefficient. If the correct binary

 126

point position is not selected then the coefficient could be read as zero or some number
not even close to the actual value.

When designing the multipliers, the block is labeled with the value of the coefficient. If
the binary point is not calculated correctly, the value of the coefficient will not be a good
representation of the value on the block.

3.4.5 Data Input Bits

Data input bits or slice, refers to the system containing 32 bits and the amount of bits that
is used or sliced from the most significant bits in a number. This slicing is important
because memory is saved with the use of a lesser bit slice.

4. RESULTS AND CONCLUSION

A system of 16 digital bandpass filters was successfully designed. The entire design was
constructed with 18 data input bits (slice). The proposed plan was to use a 12-bit slice to
maintain a satisfactory level of memory usage. After numerous tests, the use of a 16-bit
slice simulated satisfactory results. The entire design was constructed to be implemented
with an 18-bit slice, which showed more accurate results than the 16-bit slice. Filters 8 –
16 are second-order bandpass filters. Filters 1 – 7 would not produce satisfactory results
using second-order bandpass filters because of the need for a high number of bits due to
the high precision in the coefficients. Also, in the lower frequency filters, the coefficients
are much more similar than the higher frequencies, and the need for a higher precision is
necessary. The use of first-order filters was designed instead. While, first-order was
satisfactory, there was a significant amount of overlap in neighboring filters. Second-
order lowpass filters were added before the first-order bandpass filters that minimized the
overlap to satisfactory levels. The final diagram is shown in Figure 13 and its simulation
in Figure 14.

 127

Figure 13: Final diagram of filter design.

Figure 14: Final simulation of filter design.

 128

The final design would need four of the proposed XCV300 chips to implement the
entirety of the design. Table 5 shows the memory usage per chip of each of the 16 filter
banks. Filters 8 – 16 were implemented individually but filters 1 – 7 were implemented
together with the lowpass and bandpass filters together and the memory usage was
accounted for together.

 Filter bank Total memory usage per chip (%)
 1 24
 2 24
 3 26
 4 26
 5 26
 6 27
 7 27
 8 19
 9 19
 10 20
 11 20
 12 19
 13 20
 14 19
 15 19
 16 19

Table 5, Total memory usage per chip for each filter bank.

This design can be adjusted by manipulating the bits in order to use only three XCV300
chips but the performance will decrease. With the use of four XCV300 chips there is
some memory that is not being used. The design can be optimized to fit the entirety of
the four chips. Another option for this design is to use a chip with a larger memory
capacity. The XCV1000 increases the system gates from the XCV300’s 322970 system
gates to 1124022 that would be enough to implement all 16-filter banks on a single
FPGA chip.

5. ACKNOWLEDGMENTS

I would like to thank the National Science Foundation (NSF) for their sponsorship of the
2002 Summer Undergraduate Fellowships In Sensor Technologies (SUNFEST) Research
Program through the NSF-REU grant. Special thanks to Dr. Jan Van der Spiegel, who
provided his time, resources, and facilities, and Dr. Paul Mueller who also provided his
time and resources. Without the support of Dr. Van der Spiegel and Dr. Mueller, the
progression of my research would not have been possible. Ms. Lois Clearfield, Dr.
Dwight Jagard, Dr. Nathan Ensmenger, Dr. Jorge Santiago-Aviles, Mr. Sid Deliwala, and
Ms. Janice Fisher were responsible for the program’s organization, support, and
educational instruction of the program. Thanks also to Fran Olivieri and the Xilinx
support staff for their help in the research.

 129

6. REFERENCES:

1. 21st Century Eloquence. Industry Trends.
http://voicerecognition.com/2000/trends/

2. Quatieri, Thomas. Discrete-Time Speech Signal Processing, Principals and
Practice. Upper Saddle River, NJ: Prentice-Hall, 2002.

3. Ali, Ahmed. Auditory-Based Acoustic-Phonetic Signal Processing for Robust
Continuous Speech Recognition. Ph.D. Dissertation, Department of Electrical
Engineering, University of Pennsylvania. December 1999.

4. Chen, Miranda and Gaw, Samantha and Raskob, Benjamin. Auditory Based
Bandpass Filters Implemented on a single FPGA. Senior Project, Department of
Electrical Engineering, University of Pennsylvania. April 2002.

5. Lee, Leonard and Lee, Tjenchew. FPGA Implementation of Front-End Auditory
Speech Processing. Senior Project, Department of Electrical Engineering,
University of Pennsylvania. May 2001.

6. Hinck, Todd. “Experiments with Digital Cochleas” in Workshop on
Neuromorphic Engineering.
http://www.isr.umd.edu/~djklein/tride99/cochlea.html

7. Watts, Loyd. “Reverse Engineering the Brain” in Seminar on Computer Systems.
http://murl.microsoft.com/LectureDetails.asp?640 May 2000.

8. The XESS Corporation. loop-simple.zip. http://www.xess.com/
9. Oppenhein, Alan and Schafer, Ronald. Discrete-Time Signal Processing. Upper

Saddle River, NJ: Prentice-Hall, 1999.

7. APPENDICES A - E

 130

APPENDIX A

FACILITIES/EQUIPMENT

XSV300
XCV300
XESS XSTools
Matlab Release 12 with Simulink’s DSP Blockset license
Xilinx with System Generator (ISE 4)
ATX power supply (needed to power board and chip)
Oscilloscope
Function Generator
Cables (various)

 131

APPENDIX B

NOMENCLATURE

A/D Analog to Digital
D/A Digital to Analog
DSP Digital Signal Processing
FFT Fast Fourier transform
FIR Finite Impulse Response
FPGA Field programmable gate array
I/O Input/Output
IIR Infinite Impulse Response
ISE Integrated Service Environment
VHDL Hardware Description Language
VHSIC Very High Speed Integrated Circuit

 132

APPENDIX C

The clock divider designed by Lee and Lee.

 133

APPENDIX D

The corrected codec design used in the final design.

 134

APPENDIX E

This appendices will define a few graphs that would give a better understanding of a
comparison of what is expected from the results due to the parameters* selected for this
project. All graphs are simulated with Matlab’s Spectrum Scope.

*All parameters are not shown or discussed in these appendices. Only the major factors
are discussed for a better understanding of the project.

This window shows how a single filter (subsystem) is setup for viewing with a spectrum
scope.

This is the output of the previous window. The subsystem is a second-order bandpass
filter with center frequency of 2900 Hz. Full precision was used in the coefficient bits
and a 16-bit slice for the data input bits.

 135

Type: bandpass
Order: 1st
Center Frequency (Hz): 250
Coefficient bits: full
Data input bits: 8

Type: bandpass
Order: 1st
Center Frequency (Hz): 250
Coefficient bits: 16
Data input bits: 8

 136

Type: bandpass
Order: 1st
Center Frequency (Hz): 250
Coefficient bits: 16
Data input bits: 8

Type: bandpass
Order: 1st
Center Frequency (Hz): 250
Coefficient bits: full
Data input bits: 16

 137

Type: bandpass
Order: 1st
Center Frequency (Hz): 250
Coefficient bits: 16
Data input bits: 16

Type: bandpass
Order: 1st
Center Frequency (Hz): 250
Coefficient bits: 8
Data input bits: 16

 138

Type: bandpass
Order: 1st
Center Frequency (Hz): 2900
Coefficient bits: 16
Data input bits: 8

Type: bandpass
Order: 1st
Center Frequency (Hz): 2900
Coefficient bits: full
Data input bits: 8

 139

Type: bandpass
Order: 1st
Center Frequency (Hz): 2900
Coefficient bits: 8
Data input bits: 16

Type: bandpass
Order: 1st
Center Frequency (Hz): 2900
Coefficient bits: 16
Data input bits: 16

 140

Type: bandpass
Order: 1st
Center Frequency (Hz): 2900
Coefficient bits: full
Data input bits: 16

Type: bandpass
Order: 2nd
Center Frequency (Hz): 2900
Coefficient bits: 8
Data input bits: 8

 141

Type: bandpass
Order: 2nd
Center Frequency (Hz): 2900
Coefficient bits: 16
Data input bits: 8

Type: bandpass
Order: 2nd
Center Frequency (Hz): 2900
Coefficient bits: full
Data input bits: 8

 142

Type: bandpass
Order: 2nd
Center Frequency (Hz): 2900
Coefficient bits: 8
Data input bits: 16

Type: bandpass
Order: 2nd
Center Frequency (Hz): 2900
Coefficient bits: 16
Data input bits: 16

 143

Type: bandpass
Order: 2nd
Center Frequency (Hz): 2900
Coefficient bits: full
Data input bits: 16

 144

Type: bandpass
Order: 2nd
Center Frequency (Hz): 2900

This is a comparison of:

Coefficient bits: 12
Data input bits: 12
(lowest magnitude)

versus

Coefficient bits: 14
Data input bits: 14
(middle one)

versus

Coefficient bits: 16
Data input bits: 16
(highest magnitude)

 145

Type: bandpass
Center Frequency (Hz): all
Coefficient bits: full
Data input bits: 8

Type: bandpass
Center Frequency (Hz): all
Coefficient bits: full
Data input bits: 16

 146

Type: bandpass
Filters: 1 – 7
Coefficient bits: 18
Data input bits: 18
Filters: 8 – 16
Coefficient bits: 16
Data input bits: 16

Type: bandpass
Filters: 1 – 16
Coefficient bits: 18
Data input bits: 18

 147

DESIGN OF AN ARTIFICIAL COCHLEA USING DIGITAL FILTERS ON A FIELD-
PROGRAMMABLE GATE ARRAY .. 109
Aslan Ettehadieh (Electrical Engineering) – Morgan State University
Advisors: Dr. Jan Van der Spiegel and Dr. Paul Mueller

ABSTRACT.. 109

1. INTRODUCTION... 109
2. BACKGROUND... 111
3. STRATEGIC PLAN ... 111

3.1 Proposed Approach ... 111
3.2 Hardware And Software Requirements... 112

3.2.1 Hardware Requirements.. 112
3.2.1.1 FPGA Chip.. 112
3.2.1.2 Virtex Processing Board.. 112

3.2.2 Software Requirements .. 113
Software Purpose... 113

3.2.2.1 Mathworks Matlab R12.1 (v6.1) ... 113
3.2.2.1.1 Mathworks Simulink (v4.1) ... 114
3.2.2.1.2 Mathworks Dsp Blockset (v4.1) .. 114

3.2.2.2 XILINX ... 116
3.2.2.2.1 XILINX System Generator (v2.1).. 116
3.2.2.2.2 XILINX ISE (v4.2i) ... 116

3.2.2.3 XESS XSTools.. 116
3.3 Filter Design.. 116

3.3.1 Filter Structure... 117
3.3.2 Filter Type ... 118
3.3.3 Filter Order.. 118
3.3.4 Filter Diagrams.. 120
3.3.5 Filter Frequency Range ... 121

3.4 SUB-SYSTEM DESIGN AND IMPLEMENTATION.................................... 122
3.4.1 Audio Codec And Clocking .. 122
3.4.2 Shift Register Operations .. 125
3.4.3 System Errors And Their Solutions .. 125
3.4.4 Binary Point Arithmetic .. 125
3.4.5 Data Input Bits .. 126

4. RESULTS AND CONCLUSION ... 126
5. ACKNOWLEDGMENTS... 128
6. REFERENCES:... 129
7. APPENDICES A - E ... 129
APPENDIX A ... 130
APPENDIX B ... 131

NOMENCLATURE.. 131
APPENDIX C ... 132
APPENDIX D ... 133
APPENDIX E.. 134

 148

