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ABSTRACT 
 
Traditional methods of speech recognition have very limited complexity and impose 
considerable grammar constraints.  Today’s systems have critical problems understanding 
different voices and do not have robust vocabularies.  This paper describes research on a 
biological method for speech recognition that models an artificial cochlea using digital 
filters.  The specific part of the cochlea of interest here, the basilar membrane acts as a 
collection of bandpass filters that will be mimicked to develop an artificial digital 
cochlea.  
 
This digital cochlea will be implemented on a single Xilinx field programmable gate 
array (FPGA).  The FPGA chip is on a board that contains both an analog to digital (A/D) 
converter and a digital to analog (D/A) converter.  The A/D converter converts the speech 
signal into a digital representation; the D/A converter converts the digital signal back into 
its original analog form.  The board also includes a lowpass anti-aliasing filter to reduce 
the noise and keep only the range of human speech frequencies approximately 100 to 
3500 Hertz.  The range of frequencies will be divided into 16 bands.  The FPGA chip will 
contain 16 programmable bandpass filters to split up the speech signal into separate 
frequency components that can be used to determine phonemes, the simplest unit of 
speech.  Phoneme-level recognition will improve the speed and accuracy of speech 
recognition. 
 
The final product is expected to be cost efficient and to be implemented on a single chip.  
The digital cochlea will be used in conjunction with a neural network that will extract 
features and phonemes from speech signals. 
 
 
1. INTRODUCTION 
 
Speech recognition technology has become more popular and has advanced considerably 
over the past several years.  Recognition software has been integrated into many 
applications.  For example, Eloquently Stated, a software package for medical 
professionals, adds speech recognition to manage patient records and medical histories, 
and creates comprehensive referral source databases.  Another application of speech 
recognition technology is language translation.  Lernout & Hauspie has released a 
software package that can translate to and from English and: Spanish, German, French, 
Italian, Portuguese, and Japanese. [1]   
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Speech recognition in traditional methods has limited complexity and artificial grammar 
constraints.  The importance of our speech recognition research is to have a design that is 
more robust in its ability to recognize speech.  Drawing on a biological method for 
speech recognition, this research will model a design after the basilar membrane in the 
cochlea of a human ear. 
 
There are three major divisions of the peripheral auditory system: the outer ear, middle 
ear, and inner ear.  Without great detail the outer and middle parts of the ear are 
responsible for transforming and transporting sound to vibrations to the inner ear.  The 
major component of the inner ear, the cochlea, cochlea converts mechanical vibrations 
caused by sound waves into electrical impulses.  The cochlea is a coiled tube that looks 
like a snail and is filled with fluid.  The basilar membrane is located about halfway down 
the cochlea’s length and within the cochlear fluid.  It is held to the cochlea by bone.  A 
compressed sound wave is generated in the cochlear fluid by the vibrations of the 
eardrum, which result from movement where the middle ear is connected to the inner ear 
by way of the oval window.  The compressed sound wave generated in the cochlear fluid 
causes an up-and-down vibration of the basilar membrane.  Along the basilar membrane 
are thousands of inner hair cells that, when simulated by vibration “fire” short electrical 
pulses in the nerve fibers.  The nerve fibers are bunched together to form the auditory 
nerve.  When these electronic pulses travel along the auditory nerve, they find their way 
to the higher levels of the auditory processing in the brain.  This is where the brain 
perceives what is heard as sound.  [2] 
 
When the ear is stimulated by sound, different regions of the basilar membrane respond 
to different frequencies that occur in a sort of “tuning” of frequencies.  These different 
regions can be translated as a bank of cochlear filters along the basilar membrane.  The 
cochlea consists of thousands of filters.  Being practically for today’s limitations, a 
design on a single field-programmable gate array (FPGA) could not hold enough memory 
to have a bank of thousands of filters working properly.  The University of Pennsylvania 
built a neural network that can extract features and phonemes from speech signals.  This 
neural network was designed to work in conjunction with a digital cochlea with a bank of 
16 filters.  The design described in this research is limited to the maximum memory 
capacity of the FPGA and leads to 16 separate filters. 
 
The frequency range of human speech is approximately from 100 to 3500 Hertz.  Since 
the design can have only 16filters, 16 center frequencies have been chosen to cover the 
range of human speech. 
 
The digital cochlea will be downloaded into an FPGA and implemented into a neural 
network.  This neural network will investigate phonemes in order to facilitate the later 
design of a system that can recognize these phonemes. 
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2. BACKGROUND 
 
This project, among many other attempts since 1998 at the University of Pennsylvania, 
has been done primarily because of the doctoral research of Ahmed Ali.  Ali’s 
dissertation Auditory-Based Acoustic-Phonetic Signal Processing for Robust Continuous 
Speech Recognition, postulates a biological approach to speech recognition.  He proposes 
to replicate cochlea-like filtering behaviors that will be able to recognize more 
spontaneous speech than can be recognized by current systems, which have very limited 
perplexity and artificial grammar constraints.  [3] 
 
Cheng and Edelman, attempted to implement 36 analog programmable cascading filters 
on a Xilinx FPGA chip.  However, their design, which required roughly 80,000 gates, 
was too complex for the single proposed chip, which contained only 5,000 gates.  [4] 
 
Lee and Lee [5] attempted the first design of a 16-channel filter system.  Because of time 
limitations, their designs were only simulated and not implemented on an FPGA chip.   
 
Chen, Gaw, and Raskob continued the project based on Lee and Lee’s work.  They were 
able to download a 16-channel first-order bandpass filter system on a single FPGA.  
Their design showed only minimal promise in the eleventh filter. Time constraints left 
them unable to optimize their system design. 
 
Some related work has been conducted outside the University of Pennsylvania. Hinck’s 
unsuccessfully attempted to implement a design consisting of a 6 to 10 channel digital 
cochlea filter on an FPGA.  [6] Watts built a functioning real-time, high-resolution, 240-
tap, 10-octave, 44 kHz-sampling cochlear model on multiple FPGAs.  [7] 
 
3. STRATEGIC PLAN 
 
This research will consist of four general stages.  The first stage is to research current 
understanding of the biology of the human cochlea and to become familiar with software 
and hardware components that will be needed to complete the research.  The second stage 
is to design models using software packages.  Simulation of these designs will be 
necessary to ensure accuracies in the filter designs.  The third stage is to implement the 
architectural design to VHDL code and download it to the FPGA.  The last stage is to test 
the FPGA to compare simulations with actual real-time testing. 
 
3.1 Proposed Approach 
 
The main goal of this project is to create one working model of an FPGA with digital 
filters that mimic the basilar membrane of the cochlea.  This FPGA chip must be 
optimized to a satisfactory performance level where the center frequency of a certain 
filter does not resonate in a neighboring filter.  Filter designs will be constructed and 
tested on a software level.  When desired results are reached, the filters will be 
downloaded and tested at a hardware level. Then, the filters will again be optimized 
further, downloaded again into the FPGA, and tested. 
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3.2 Hardware And Software Requirements 
 
Much of the hardware and software was made available by past attempts at the project.  
New licensing was necessary to use software that had expired.  Cables were previously 
made to connect to and from the board.  The co-axel cables were connected to audio 
jacks had been attached with the wrong polarities.  Polarities were corrected and were 
soldered to permanently fix the problem. 
 
 
3.2.1 Hardware Requirements 
 
The FPGA chip, XCV300, and the processing board, XSV300, were both already 
available.  The board was tested with sample inputs to ensure proper working conditions.  
A sample test provided with the board, called GXStest, for unknown reasons gave the 
error that the board was not properly functioning.  A zip file was obtained from XESS 
Corporation called loop-simple.zip.  It contained a file named loopv300.bit that was used 
to test the input versus output of the board.  This file proved that the board would 
function properly for the necessary tasks. [8] 
 
 
3.2.1.1 FPGA Chip 
 
The Xilinx Corporation manufactures a series of Virtex processing boards for FPGAs.  
The exact board and chip were predetermined because they were the only hardware 
components available with an audio compatibility and built-in A/D converter and D/A 
converter.  The specifications are shown in Table 1.  More specifications on this product 
can be found on the AK4520A datasheet provided by the Xilinx Corporation. 
 

   XCV300 Specifications 
System Gates:   322,970 

   CLB Array   32 x 48 
   Logic Cells:   6,912 
   Maximum Available I/O: 316  

 
    Table 1, XCV300 specifications 
 
 
3.2.1.2 Virtex Processing Board 
 
The board is described in Section 4.8.1.1.  The board provides an environment for the 
XCV300 chip that makes it ideal for testing.  The XCV300 chip is directly mounted onto 
the board, as shown in Figure 1. 
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Figure 1: XSV 300 prototyping board 
 
3.2.2 Software Requirements  
 
There are three main manufacturers of software needed for this research.  The 
MathWorks Corporation provides Matlab R12.1, Simulink, and DSP Blockset.  The 
Xilinx Corporation provides System Generator and ISE.  XESS Corporation provides 
XSTools. Table 2 outlines the software packages that will be used in the project. 
 
Software    Purpose 
MathWorks Matlab   Holds the environment needed to run Simulink and 
     the DSP Blockset. 
MathWorks Simulink Provides a library of blocks that represent 

commonly used functions for modeling, simulating, 
and analyzing dynamic systems. 

MathWorks DSP Blockset  Provides the ability to simulate signals for testing. 
     Provides digital design blocks for generating filter 
     coefficients. 
Xilinx System Generator  Translates the Simulink model into VHDL code. 
Xilinx ISE    Compiles the VHDL code into a bitstream file. 
XESS XSTools   Downloads the bitstream file to the FPGA. 
 

Table 2, Software packages with brief descriptions. 
 
 
3.2.2.1 Mathworks Matlab R12.1 (v6.1) 
 
Matlab is a software package used for mathematical computation and visualization.  It 
provides an environment for technical computing.  Matlab’s open architecture makes it 
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easy to explore data and create algorithms.  Matlab holds the environment for Simulink 
and the DSP Blockset.   
 
3.2.2.1.1 Mathworks Simulink (v4.1) 
 
Simulink provides an interactive tool for modeling, simulating, and analyzing dynamic 
systems.  Simulink is a library of blocks that represent many commonly used functions.  
It provides the platform for Xilinx System Generator blocks to design systems for 
FPGAs.  The license file need for Simulink and DSP Blockset packages had expired, and 
an updated license was purchased.  Several working days were lost in the interim. 
 
3.2.2.1.2 Mathworks Dsp Blockset (v4.1) 
 
The DSP Blockset is an extension to the Simulink package that works in the Simulink 
environment.  The DSP Blockset has the ability to simulate signals to test models.  Key 
features include fast Fourier transform (FFT) and its inverse, short time FFT; multi-rate 
signal processing; FIR and IIR Direct Form II Transpose filters; adaptive filters; and 
digital filter design blocks for generating filter coefficients. 
 
The DSP Blockset was used for the actual filter modeling and generating filter 
coefficients.  Figure 2 shows a graphical user interface (GUI) for the design of filters.  
This particular model is a second-order Butterworth bandpass filter with a sampling 
frequency of 16000 Hertz, band start of 2705 Hertz, and band stop of 3095 Hertz.  This is 
a second order Butterworth filter.   
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Figure 2:  Digital filter design block. 
 
The ‘Analysis’ option, located in the menu bar of the window, allows the user to view 
different items in the area presently marked ‘Filter Specifications’.  Figure 2 shows a 
diagram of the specifications of the filter to be designed.  The magnitude response can 
also be viewed, as shown in Figure 3.  Figure 4 shows the filter coefficients, from which 
we extract the coefficients to be used later. 
 

 
 

Figure 3:  Digital filter design block: magnitude response. 
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Figure 4:  Digital filter design block: filter coefficients 
 
3.2.2.2 XILINX 
 
The Xilinx Corporation provides software and hardware that enable the programming of 
logic to devices like FPGAs. 
 
 
3.2.2.2.1 XILINX System Generator (v2.1) 
 
The System Generator allows a conceptual architectural design to be created with the 
MathWorks software packages to an actual Very High Speed Integrated Circuit (VHSIC) 
Hardware Description Language (VHDL) code. 
 
3.2.2.2.2 XILINX ISE (v4.2i) 
 
The VHDL code created by the System Generator can be imported into the ISE 
environment.  The ISE package makes an actual implementation of a bitstream file that 
can be downloaded to the FPGA.  
 
 
3.2.2.3 XESS XSTools 
 
With the use of the board’s PC parallel port, XSTools downloads the bitstream file to the 
FPGA.  XSTools provides features to test the functionality of the prototyping board. 
 
3.3 Filter Design 
 
The neural network that will be used was designed for 16 inputs. Bandpass filters are 
used because they tell us if a signal contains a frequency component with a specific 
frequency range.  Using a bank of 16 such bandpass filters provides information about 
the frequency components in the signal.  These 16 bandpass filters are all infinite impulse 
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response (IIR) filters.  IIR filters are preferred to finite impulse response (FIR) filters 
because IIR filters can achieve a given filtering characteristic using less memory and 
calculations than similar FIR filters.  The main drawback of using an IIR filter is that it is 
slower than an FIR filter to implement using fixed-point arithmetic. 
 
A design of a single Xilinx chip has been implemented to have the 16 bandpass filters.  
Lowpass and highpass filters are to be optimized.  Table 3 gives an example of the center 
frequency and a range of frequencies for the bandpass filters 
 
 Center Frequency (Hertz)  Frequency Range of Bandpass Filter (Hertz) 
        (3dB-points) 

150 125 – 175 
  250      225 –  275 
  350      325 –  375 
  450      420 –  480 
  570      530 –  605 
  700      655 –  745 
  840      790 –  890 
  1000      940 –  1060 
  1170      1105 –  1235 
  1370      1285 –  1455 
  1600      1505 –  1695 
  1850      1745 –  1955 
  2150      2005 –  2295 
  2500      2345 –  2655 
  2900      2705 –  3095 
  3400      3145 –  3655 
 

Table 3, Center frequencies and their corresponding frequency ranges.  
 
Fixed-point arithmetic will be used and manipulated to optimize the number of bits used 
while trying to keep the performance level close to full precision. 
 
Matlab allows users to select the filter design method.  All of the filters used in this 
project are Butterworth.  In Butterworth filters the magnitude response is maximally flat 
in the passband and monotonic overall. 
 
 
3.3.1 Filter Structure 
 
Matlab is used to generate the necessary filter.  Instead of the traditional direct form II 
structure, Matlab generates coefficients for the direct form II transpose structure using the 
general equation shown below. 
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The general diagram for the direct form II transpose general equation follows in Figure 5. 
 

 
 

Figure 5: Direct form II transpose block diagram. 
 
Different structures are to be considered over the simple direct form structure because 
even thought they are theoretically equivalent they may behave differently when 
implemented with finite numerical precision.  [9]  The direct form II transpose equation 
is preferred here because it cannot overflow “internally” in two’s complement fixed-point 
arithmetic.  The filter models are all designed in two’s complement fixed-point arithmetic 
that implies the need for the direct form II transpose structure. 
 
Fixed-point numbers are not as precise as floating-point numbers, but fixed-point 
hardware is much more cost effective, allowing a significant saving in hardware. 
 
3.3.2 Filter Type 
 
Of the many different types of filters available, only the lowpass, highpass, and bandpass 
types are needed for this research.  Lowpass filters pass low frequencies and attenuate 
higher frequencies.  Highpass filters do the opposite.  Bandpass filters pass a limited 
range or band of frequencies, and attenuate frequencies above and below this range. 
 
3.3.3 Filter Order 
 
The order of a filter indicates the sharpness of the filtering or the slope of the rolloff 
curve.  The higher-order filter designed, the sharper the filtering.  A second-order filter 
provides much greater precision because of the use of more coefficients.  The downside 
is that it uses more bits and therefore requires more memory in the system.  Filters can be 
designed with the use of Simulink and DSP Blocksets.  Figure 6 shows the block diagram 
of a first-order bandpass filter with center frequency of 2900 Hertz.  Figure 7 shows a 
block diagram of a second-order bandpass filter with the same center frequency.  It is 
apparent that the second-order filter has more blocks that would require more bits of 
memory. 
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Figure 6: First order bandpass filter block diagram 
 

 
 

Figure 7: Second order bandpass filter block diagram 
 
Adder (AddSub) blocks have only two inputs and one output.  In the second-order filter, 
two adders must be joined together to allow three inputs to be added.  To date, the 
software package’s adders are able to add only two inputs. 
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3.3.4 Filter Diagrams 
 
A few major designs proposed for comparison.  A standard 16 bandpass filter was first 
drafted, the simplest of the designs.  A simple series of four bandpass filters is shown in 
Figure 8. 
 
 A modified version of the 16 bandpass filters was also designed.  This model is a chain 
of 16 lowpass filters that the bandpass filter taps off of.  The cut-off frequencies of the 
lowpass filters are the same as those of the bandpass filters (see Table 3).  This model 
decomposes a broadband signal into a collection of successively more band-limited 
components by repeatedly dividing the frequency range.  In comparison to the basic 16 
filters, this model gives an increase of one order higher to one side of the bandpass filters, 
resulting in a steeper roll-off.  Therefore, if a bandpass filter was of the first-order, the 
bandpass would be theoretically equivalent to a first-order lowpass and first-order 
highpass.  If lowpass filters were added before the bandpass, the design could be 
interpreted as a second-order lowpass and a first-order highpass.  The left column of 
filters represents the lowpass filters and the right column represents the bandpass filters.  
A design of four lowpass to four bandpass filters is shown in Figure 9. 
 
The last major design is the symmetric basic tree structure design.  The tree structure 
decomposes both the high and low frequency sub-bands with lowpass and highpass filters 
at each level until the range of frequencies fit the desired range of the 16 bandpass filters.  
A standard four bandpass tree structure is shown in Figure 10. 
 

 
Figure 8: Basic filter diagram 
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Figure 9: Lowpass to bandpass filter diagram 

 
 

 
Figure 10: Tree structure filter diagram 

 
Because of time constraints, most of the research has focused on the basic 16 filter 
design.  Some results were simulated from the tree structure and the lowpass to highpass 
structure, but it was too early in the research and many of the software “bugs” had not 
been fixed.  No results from this research are reported here. 
 
3.3.5 Filter Frequency Range 
 
Because of the limit on the use of bits, the system design will still have to be optimized.  
In order to keep a certain frequency from resonating in more than one filter, filters will 
have to be optimized.  If memory does not permit the system to increase the order of the 
filter, a sacrifice can be made by decreasing the range of frequencies around the center 
frequency of each filter.  This will reduce the magnitude of the intersection between 
neighboring filters, which in turn produces a decrease of overlap between neighboring 
filters. 
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3.4 SUB-SYSTEM DESIGN AND IMPLEMENTATION 
 
The original goal was to have a working model of a 16-channel bandpass filter model of a 
digital cochlea.  The goal was hindered by the discovering of many errors in designs, 
both in the prior research methods and current research methods.  Errors were found in 
the clocking design, in adder blocks of the filter design, in binary point arithmetic 
calculations, and in generating VHDL code with the use of a multiplexer.  The filter 
design is complicated by the need to use the correct number of bits to arrive at a level of 
precision able to accurately filter the desired range of frequencies while maintaining the 
memory capacity of the FPGA.  The filters with lower frequencies need more bits 
because without high accuracy in the coefficients, primary the numerator coefficients, the 
coefficients would seem to be the same.  An example of the difference between 
coefficients is described in Table 4.  If two coefficients, 0.009722345450232430 and 
0.009722345450233991, both use insufficient number of bits to retain the precision, both 
numbers could represented as 0.009722345450230000 and there would be no difference 
seen.  Otherwise if two coefficients, 0.0574428650970612 and 0.071258915652282401 
use the same number of bits for precision the numbers could be seen as 
0.057442865097000 and 0.071258915652280000; and the differentiation still can be 
made between the two coefficients.  
 

Center freq. Bandpass range Numerator 1 (b1) coefficient  
250  225 – 275  0.009722345450232430  
350  325 – 375  0.009722345450233991 
2500  2345 – 2655  0.0574428650970612 
2900  2705 – 3095  0.071258915652282401 

 
 Table 4, Coefficient precision comparison (sample frequency of 16 kHz). 
 
The second and third filter coefficients are very similar and it is crucial to use enough bits 
to differentiate the two.   The similarity between the first and second filter coefficients is 
even greater.  The numerator 1 (b1) and numerator 3 (b3) are equal except one is negative 
and the other positive.  Through trial and error, b3 was shown to have the greatest need 
for bits than b1.  Coefficient b1 needs more bits than the denominator coefficients.  The 
denominator coefficients seem to follow the same trend, with a3 needing more bits than 
a2, and so forth. See Section 3.3.1 to visualize the numerator and denominator 
coefficients.   
 
3.4.1 Audio Codec And Clocking 
 
The neural network was designed for a sampling frequency of 16000 Hertz.  The system 
has to be designed using the same sampling frequency if the signal processing is to be 
done accurately.  The filter coefficients were generated with the 16 kHz sampling 
frequency.  The undivided XSV300 board’s clock runs at 100 MHz.  The XSV300 has a 
clock divider that allows the clock to be divided by 2, 3, 4, etc.  A clock frequency of 
33.3 MHz was selected. 
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The Stereo codec on this board requires three control clocks: LRCK, SCLK, and MCLK. 
 
LRCK is the signal that selects the left (0) or right (1) channel.  This signal should be the 
same as the sampling frequency.  Defined in the codec datasheet (Appendix ###) for the 
codec, the minimum frequency allowed for the LRCK is 16 kHz. 
 
SCLK is used to synchronize the serial bit stream.  There must be 32 cycles for each of 
the two channels in the sample, which means the SCLK must be set to 64 times the 
sampling frequency. 
 
MCLK is the master clock, which is used to synchronize the internal operations of the 
codec.  This board requires that the MCLK be set to 256 times the sampling frequency. 
 
The following are the settings desired: 
 
 Divisor     3 
 Clock frequency provided   33.33 MHz 
 MCLK (CLK divide by 8)   4.167 MHz 
 SCLK (CLK divide by 32)   1.042 MHz 
 LCLK (CLK divide by 2048)   16.28 KHz 
 
A clock division macro was developed using T-flipflops in sequence.  This clock divider 
was designed by Lee and Lee and is shown in Appendix C.  Their codec design is shown 
in Appendix D.  [5]   
 
The codec specifies that the rising edge of SCLK should not occur at the same time as the 
LRCK clock edge.  This required a slight modification in the design of the clock divider 
to invert the SCLK signal.   
 
When the bitstream of filters was downloaded into the FPGA the data shown on the 
oscilloscope was not stable and did not correspond to the discrete output.  The clocking 
devised by Lee and Lee was investigated and found to be done incorrectly.  The LCLK 
that had match the sampling frequency of 16 kHz was producing a signal of 8 kHz.  The 
clocking structure created by Lee and Lee is shown in Figure 11.  The corrected clock 
with LCRK at 16 kHz is shown in Figure 12.   
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Figure 11: Clock created by Lee and Lee. 
 

 
 

Figure 12: Corrected clocking structure with LCLK at 16 kHz. 
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3.4.2 Shift Register Operations 
 
Only two operations involved the shift register: a serial-to-parallel conversion and a 
parallel-to-series conversion. (These were designed by Chen, Gaw, and Raskob [4].)  The 
serial-to-parallel conversion takes the single bitstream and outputs a slice of bits to the 
filter.  The macro designed is a 32-bit register made of 32 D-flipflops in sequence.  While 
the macro outputs a 32-bit bus, only the selected slice of bits is passed to the filter and the 
remaining bits are simply dropped.  The slice of bits was first done with 8 bits and then 
with 16 bits.  The 16-bit slice proved to be a more desirable option.  The difference 
between an 8-bit slice and a 16-bit slice will be shown in Section 3.4.5.   
 
3.4.3 System Errors And Their Solutions 
 
There were many errors in simulating models using the shift registers.  Lee and Lee 
simulated results mainly with an 8-bit slice with an output of 8 bits in the filter that did 
not give errors.  They used 8 bits across the system in order to keep the number of bits 
minimal.  When more bits had to be added in the system, there was no documentation of 
the resulting errors that resulted.  Matching the number of bits that were sliced to the last 
output bits of the subsystem solved the errors.  Figure 6 and Figure 7 in Section 3.3.3 
show a model of a subsystem.  In this subsystem the last AddSub would have to output 
the same number of bits as the slice.  Also, the last AddSub needed to carry a sample 
period of –1, which means it inherits the first known input period.   
 
Another error (ERROR: NgdBuild:604) was encountered when generating the VHDL 
file.  When generating more than one of the 16 outputs, a multiplexer is needed.  This 
multiplexer gave a puzzling error message that was stored in a file called coregen.log.  
This file gave an error in the cores of different blocks, usually multipliers.  This error was 
solved by generating with the option of “Everywhere Available” under the Xilinx Core 
Generator.  This problem was not encountered again after that change was made. 
 
3.4.4 Binary Point Arithmetic 
 
The accuracy of the filter is determined by three main options.  The first is the number of 
bits that will be selected to slice the data that goes into the system.  The second is the 
precision of the bits selected for certain blocks.  Blocks that allow the user to select the 
number of bits used to determine the precision are AddSub and multipliers.  The last 
option is the selection of the right binary point position.  
 
In a design, delay and adder blocks are usually simple, but multipliers may be cause for 
concern.  If the option of “full precision” is not selected then the user must select the 
number of bits of the coefficient and its binary point position.  Xilinx defines full 
precision in the block as having sufficient precision to represent the result without error.  
When selecting the binary point, the user is selecting how many bits are to the right of the 
binary point (the size of the fraction).  The binary point position must be between zero 
and the number of bits that the user selected for the coefficient.  If the correct binary 
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point position is not selected then the coefficient could be read as zero or some number 
not even close to the actual value. 
 
When designing the multipliers, the block is labeled with the value of the coefficient.  If 
the binary point is not calculated correctly, the value of the coefficient will not be a good 
representation of the value on the block. 
 
3.4.5 Data Input Bits 
 
Data input bits or slice, refers to the system containing 32 bits and the amount of bits that 
is used or sliced from the most significant bits in a number.  This slicing is important 
because memory is saved with the use of a lesser bit slice. 
 
4. RESULTS AND CONCLUSION 
 
A system of 16 digital bandpass filters was successfully designed.  The entire design was 
constructed with 18 data input bits (slice).  The proposed plan was to use a 12-bit slice to 
maintain a satisfactory level of memory usage.  After numerous tests, the use of a 16-bit 
slice simulated satisfactory results.  The entire design was constructed to be implemented 
with an 18-bit slice, which showed more accurate results than the 16-bit slice.  Filters 8 – 
16 are second-order bandpass filters.  Filters 1 – 7 would not produce satisfactory results 
using second-order bandpass filters because of the need for a high number of bits due to 
the high precision in the coefficients.  Also, in the lower frequency filters, the coefficients 
are much more similar than the higher frequencies, and the need for a higher precision is 
necessary.  The use of first-order filters was designed instead.  While, first-order was 
satisfactory, there was a significant amount of overlap in neighboring filters.  Second-
order lowpass filters were added before the first-order bandpass filters that minimized the 
overlap to satisfactory levels.  The final diagram is shown in Figure 13 and its simulation 
in Figure 14. 
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Figure 13: Final diagram of filter design. 
 

 
 

Figure 14: Final simulation of filter design. 
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The final design would need four of the proposed XCV300 chips to implement the 
entirety of the design.  Table 5 shows the memory usage per chip of each of the 16 filter 
banks.  Filters 8 – 16 were implemented individually but filters 1 – 7 were implemented 
together with the lowpass and bandpass filters together and the memory usage was 
accounted for together. 
 
 Filter bank   Total memory usage per chip (%) 
 1    24 
 2    24 
 3    26 
 4    26 
 5    26 
 6    27 
 7    27 
 8    19 
 9    19 
 10    20 
 11    20 
 12    19 
 13    20 
 14    19 
 15    19 
 16    19 
 

Table 5, Total memory usage per chip for each filter bank.  
 
This design can be adjusted by manipulating the bits in order to use only three XCV300 
chips but the performance will decrease.  With the use of four XCV300 chips there is 
some memory that is not being used.  The design can be optimized to fit the entirety of 
the four chips.  Another option for this design is to use a chip with a larger memory 
capacity.  The XCV1000 increases the system gates from the XCV300’s 322970 system 
gates to 1124022 that would be enough to implement all 16-filter banks on a single 
FPGA chip. 
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APPENDIX A  
 
FACILITIES/EQUIPMENT 
 
XSV300 
XCV300 
XESS XSTools 
Matlab Release 12 with Simulink’s DSP Blockset license 
Xilinx with System Generator (ISE 4) 
ATX power supply (needed to power board and chip) 
Oscilloscope 
Function Generator 
Cables (various) 
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APPENDIX B 
 
NOMENCLATURE 
 
A/D     Analog to Digital 
D/A     Digital to Analog 
DSP     Digital Signal Processing 
FFT     Fast Fourier transform 
FIR     Finite Impulse Response 
FPGA     Field programmable gate array 
I/O     Input/Output 
IIR     Infinite Impulse Response 
ISE     Integrated Service Environment 
VHDL     Hardware Description Language 
VHSIC    Very High Speed Integrated Circuit 
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APPENDIX C 
 

 
 
The clock divider designed by Lee and Lee. 
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APPENDIX D 
 

 
 
The corrected codec design used in the final design. 
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APPENDIX E 
 
This appendices will define a few graphs that would give a better understanding of a 
comparison of what is expected from the results due to the parameters* selected for this 
project.  All graphs are simulated with Matlab’s Spectrum Scope. 
 
*All parameters are not shown or discussed in these appendices.  Only the major factors 
are discussed for a better understanding of the project. 
 
 

 
 

This window shows how a single filter (subsystem) is setup for viewing with a spectrum 
scope. 

 

 
 

This is the output of the previous window.  The subsystem is a second-order bandpass 
filter with center frequency of 2900 Hz.  Full precision was used in the coefficient bits 
and a 16-bit slice for the data input bits. 
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Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   250 
Coefficient bits:    full 
Data input bits:    8 

 
 

 
 

Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   250 
Coefficient bits:    16 
Data input bits:    8 
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Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   250 
Coefficient bits:    16 
Data input bits:    8 

 
 

 
 

Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   250 
Coefficient bits:    full 
Data input bits:    16 
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Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   250 
Coefficient bits:    16 
Data input bits:    16 

 
 

 
 

Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   250 
Coefficient bits:    8 
Data input bits:    16 
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Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   2900 
Coefficient bits:    16 
Data input bits:    8 

 
 

 
 

Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   2900 
Coefficient bits:    full 
Data input bits:    8 
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Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   2900 
Coefficient bits:    8 
Data input bits:    16 

 
 

 
 

Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   2900 
Coefficient bits:    16 
Data input bits:    16 
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Type:      bandpass 
Order:      1st 
Center Frequency (Hz):   2900 
Coefficient bits:    full 
Data input bits:    16 

 
 

 
 

Type:      bandpass 
Order:      2nd 
Center Frequency (Hz):   2900 
Coefficient bits:    8 
Data input bits:    8 
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Type:      bandpass 
Order:      2nd 
Center Frequency (Hz):   2900 
Coefficient bits:    16 
Data input bits:    8 

 
 

 
 

Type:      bandpass 
Order:      2nd 
Center Frequency (Hz):   2900 
Coefficient bits:    full 
Data input bits:    8 
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Type:      bandpass 
Order:      2nd 
Center Frequency (Hz):   2900 
Coefficient bits:    8 
Data input bits:    16 

 
 

 
 

Type:      bandpass 
Order:      2nd 
Center Frequency (Hz):   2900 
Coefficient bits:    16 
Data input bits:    16 
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Type:      bandpass 
Order:      2nd 
Center Frequency (Hz):   2900 
Coefficient bits:    full 
Data input bits:    16 
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Type:      bandpass 
Order:      2nd 
Center Frequency (Hz):   2900 
 
This is a comparison of: 
 
Coefficient bits:    12 
Data input bits:    12 
(lowest magnitude) 
 
versus 

 
Coefficient bits:    14 
Data input bits:    14 
(middle one) 
 
versus 

 
Coefficient bits:    16 
Data input bits:    16 
(highest magnitude) 
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Type:      bandpass 
Center Frequency (Hz):   all 
Coefficient bits:    full 
Data input bits:    8 

 
 

 
 
 

Type:      bandpass 
Center Frequency (Hz):   all 
Coefficient bits:    full 
Data input bits:    16 
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Type:      bandpass 
Filters:      1 – 7 
Coefficient bits:    18 
Data input bits:    18 
Filters:      8 – 16 
Coefficient bits:    16 
Data input bits:    16 

 
 

 
 

Type:      bandpass 
Filters:      1 – 16 
Coefficient bits:    18 
Data input bits:    18 
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