Enabling Feedback Force Control for Cooperative Towing Robots

Research Advisors: Prof. Vijay Kumar & Jim Keller
Graduate Student: Soonkyum Kim
Student Researcher: Clarence Agbi
Outline

Chapter 1: Overview
Chapter 2: Motivation
Chapter 3: Problem
Chapter 4: Method and Results
Chapter 5: Future Works
Chapter 6: Impact
Overview

Cooperative Robotics:
Multiple robots working in coordination through sensory perception or explicit communication, to accomplish a set task.
Cooperative Towing Robots
Pros of Cooperative Towing

- Multiple robots doing the same task is faster than just one robot
- Decentralized system, shares load/work equally
- Easily adaptable to changes in environment
- Increased accuracy & autonomy in simple tasks
Cons of Cooperative Towing

- Our model assumes quasi-static manipulation (i.e. manipulation at low speeds)
- Errors in location and position due to dry frictions on the payload and lack of feedback
Motivation

To implement a fully autonomous and accurate cooperative towing system in the real world.
Problem

To implement a feedback system that reduces positional error (δ) and increases the accuracy of towing objects to a specific destination (X_f, Y_f).
Feedback is the process of feeding part of the output back into the input to control the behavior of the system.
Create a force feedback system to maintain constant cable tension and reduce error (δ) in the final position/destination.
Outline of Feedback System

1. Measure tension w/ Force Sensor
2. Read & Process tension data
3. Send force data w/ RF Transmitter
4. Adjust robot velocity to maintain tension
5. Receive force data w/ RF Receiver
Force Sensor: iLoad Mini Load Sensor

- Outputs frequency in proportion to the applied load
- Range of 180-250 kHz (depending on sensor)
- Compensated for temperature & calibrated for tensile forces
Easily programmed with PBASIC 2.5.
Compatible w/ sensors and well-documented
Small RAM size: 32 bytes (stores only 26 one-byte variables)
Single-threaded microprocessor
Wireless Communication: RF Transmitter & Receiver

- Operate at 433.92 MHz
- Transmission range of a couple hundred feet
- Compatible with BASIC Stamp 2
- High baud rates (up to 19.2 k baud)

Send force data w/ RF Transmitter

Receive force data w/ RF Receiver
Feedback System: Tower

Towers have cables attached to the iLoad Mini Load Sensors, using screws with holes. They are also built to align and read the cable tension.
Frictional Errors in the Tower

There was significant frictional error between the cable and the top of the Tower. Attempts to reduce the error did not work as well as hoped.
Feedback System: BASIC Stamp 2

Reads, processes, sends, and receives tension data at approximately 3x a second.
Future Work

- Integration of all three towers into the cooperative towing system
- Implementation of an interface between BASIC Stamp 2 and the robot’s positioning system
- Reduce frictional errors
- Test w/ different revisions of the BASIC Stamp 2 or multi-threaded microprocessors
- Test w/ different load cells
Our research furthers the reality of a fully autonomous cooperative system that is both accurate and efficient.
Student Researcher CLARNECE AGBI
Research Advisors VIJAY KUMAR
 JIM KELLER
Graduate Student SOONKYUM KIM
Research Funding NSF

Special Thanks to the SUNFEST Program!!

Executive Producer CLARNECE AGBI
Costume Design CLARENCE AGBI
Camera Man CLARNECE AGBI
Key Grip CLARENCE AGBI