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ABSTRACT 
 

This paper approaches the problem of detecting the orientation of an object while the 
object is grasped by a robot. Manipulator robots are learning new and exciting ways to 
interact with their environment every day. Object recognition and grasping algorithms 
allow a robot to identify, target, and grasped objects of importance. However, a common 
problem in grasping is maintaining knowledge of the orientation of the object while it is 
being grasped or manipulated. We have developed an algorithm that estimates the 
orientation of painted plastic test tubes without assistance from external markers. By 
initially using line fitting to localize the center axis of the tube to assist in the tube’s 
orientation detection, we then compare the orientation of the tube to the gripper’s 
approach to the test tube array. Based on the angle difference between the +Z-axis of the 
gripper and the center axis of the tube, the movements necessary for the robot to 
reposition its arm to properly approach the test tube array can be calculated leading to 
success in a Peg-In-Hole task.  
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1. INTRODUCTION 
 

The world is now approaching the use of robotic technology in ubiquity. From 

autonomous vehicles to disaster relief, robots are being utilized and integrated into 

everyday tasks. Humans assisted by robotic systems are starting to eliminate risk and 

danger from hazardous situations. For example, with the help of a micro drone swarm 

that can respond to a scene of a hostile situation, first responders can be more 

knowledgeable and better equipped to protect themselves and efficiently resolve the 

situation.  

 

Another example is related to the recent emergence of infectious disease incidents. 

Robotics could be used to evaluate and test human samples for infections while 

reducing the risk of contamination or unwanted exposure. In order for a robot to 

engage in these complicated and meticulous tasks, the robot must be able learn about 

its environment and manipulate the tools at its disposal to increase efficiency. Among 

a number of obstacles to overcome before a robot is equipped to participate in a 

laboratory setting, Figure 1, we found that grasped object orientation detection would 

be an impactful tool to increase the accuracy of peg-in-hole tasks as well as increase 

safety and success during tasks that include peg-in-hole.  

 
Figure 1: Grasp Lab's Baxter robot at a work bench with laboratory test tubes and test tube arrays 
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Assuming the robot has knowledge about the objects in the testing environment and 

how to manipulate and interact with those objects, there are a number of object 

qualities that are taken for granted that can affect change in the environment. In 

previous experiments, we found that our robot is able to identify and grasp objects, 

but in some situations the object’s orientation can be altered while the robot has the 

object in its grasp. We noticed and decided to focused our research on painted test 

tubes, Figure 2.  

 
Figure 2: Robot gripper holding experimental test tube 

This introduces the novelty of orientation detection. The robot will need to place 

down a test tube in a specific position in the test tube array. If the robot is unaware 

that the tube’s orientation has altered due to slippage caused by weight or lack of grip, 

when the object is finally placed down it will most likely be in the wrong final 

position. By developing an algorithm that can identify the orientation of the tube in 

the robot’s gripper, we can improve operational accuracy and precision while 

ensuring success for peg-in-hole tasks. 

 
2. BACKGROUND  

 
A number of research scientists and roboticists have approached the problematic 

aspects of pose and orientation estimation of objects. First the robot must be able to 

detect the object of interest. Rabbani, et all [1], and Thomas, et all [2], both used 
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Hough transforms to detect cylindrical objects of interest in order to infer cylindrical 

edges and object axis. Due to our use of cylindrical objects, Hough transforms and 

other edge detectors are extremely important in cylindrical object detection.   

 

Cylindrical object detection is important, but our objects are also made of glass or 

plastic, which means that they are transparent.  Lysenkov, et all [3] managed to 

recognize and estimate the pose of transparent objects with a Kinect Sensor. This is a 

novel approach because it is popular belief that the depth sensor would penetrate any 

type of transparent object. Nevertheless, they focused on the areas where the Kinect 

failed to produce a depth map, thereby using the disadvantage of lack of detection as 

an advantage for detection. Phillips, et all [4], used learning algorithms to assist in 

detection of edges and shapes of the transparent objects.  

 

Netz, et all [5], approached object pose estimation via invariant descriptors from 

specular highlights. This approach permitted very high averages of success in 

estimating pose for a number of objects, but the pose estimation algorithm depended 

solely on specular highlights, which are not guaranteed in our circumstances. Zhu, et 

all [6], however, emphasized a robust pose estimation of trained objects in cluttered 

spaces. With the use of model silhouettes of the objects, the system could recognize 

the pose of the object in preparation for a robot to grasp.  

 

Peg-in-hole [7] is a problem tests position and control capabilities. Figure 3 shows an 

example of a peg-in-hole task.  Most would remember peg-in-hole as playing with 

baby blocks where the triangle fits in the triangular hole and the ball fits in the 

circular hole. This task is a crucial process for almost every element at a work bench. 
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Figure 3: Robot placing a test tube in the array demonstration of peg-in-hole 

 
3. TECHNICAL COMPONENTS  

 
3.1 Visual Transformations 

Transformations are a computer vision technique that includes translations and 

rotations. In this situation, transformations were used to properly orient real world 

objects from the world frame or perspective to the perspective of another coordinate 

frame. A transformation can contain a translation(T) or a rotation(R) or both. A 

translation is the movement to a point in the world frame with respect to the target 

frame, the camera. For example, if the object in the world has an origin of P(3, 5, -6), 

that corresponds to 3 units in the +X direction, 5 units in the +Y direction, and 6 units 

in the -Z direction. The translation connects the origin of the world to the origin of the 

camera. A rotation is a bit more difficult. 

 

Similar to a translation, a rotation is determined by a matrix, but this matrix is 

multiplied by the world frame in order to be properly orient the object with the 

camera frame. The rotation matrix is a 3x3 matrix whose determinant is 1.  

 cP = cRw * wP + cTw 
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For example, Figure 4 displays the object’s coordinate system in the world view. The 

camera(c) coordinate system is presented on the right. is the translation between the 

camera origin(cP) and the object’s origin(wP) in the world.  In order for the camera to 

properly determine the position and orientation of the object in the camera’s frame, 

the object must be represented in the frame of the camera, thereby transforming the 

camera coordinate system to that of the world [8]. 

 
Figure 4: 3D transformation from the camera's origin to the world's origin 

With a synced universal coordinate system, we can use the data from the perspective 

a single device, a camera, and make control decisions with accuracy. 

 

3.2 April Tags and Visual Servoing 
The robot understands its own position and the position of the test tube array via april 

tag detection. April tags are fiducial markers that, when read and computed by the 

detection software, can display 3D position, orientation, and identity information of 

the tags relative to the camera [9]. The april tags we used were part of the Tag36h11 

family. With the assistance of april tags, we were able to accurately determine the 

positions of each test tube array index with respect to the april tag attached to the 

array. For our purposes, the april tags are being detected through the right perspective 

of a stereo bumblebee camera.  
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Figure 5: Experimental test tube array with april tag attached 

We are also using april tags to assist in the robot’s arm movements. This is a 

technique called visual servoing, or vision-based robot control. With the information 

gathered by the april tags placed on the robot’s gripper, we are able to track and 

control the gripper position. Visual servoing also contributes to direct movements. 

Movements through the baxter robot API, may be planned and executed in a different 

orientation than expected. Visual servoing calculates movements from point to point, 

meaning in a straight line with regards to position. The system corrects the difference 

between current position and the desired position within a small threshold.  

 
3.3 Test Tube Orientation Detection 

In our experiments, we decided it best to use a painted test tube with a black 

background. This isolates and focuses the attention of the Canny edge detector and 

the Probabilistic Hough transform used through the OpenCV Library on the test tube. 

Our algorithm first detects the edges of the test tube in frames that come from the 

camera. The algorithm runs the detector over several frames as seen in Figure 6.  
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Figure 6: Segment detector iterations on two different camera frames. 

The segments are collected over each iteration and republished as a separate image 

similar to Figure 7. When the new image of collected points is finished, another 

Hough transform commences, to fit lines to the edges of the tube. This transform 

usually detects several lines, the algorithm averages the two lines with the maximum 

distance from each other and uses their coordinates to continue the process, Figure 8. 

Due to this being a separate image, the only characteristics are the accumulated line 

segments thereby eliminating unwanted noise in the image.   

 

 
Figure 7: Image of accumulated line segments from Probablistic Hough transform 
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Figure 8: Hough Transform of the accumulated line segment image 

The algorithm then averages the two similar lines that represent the edges of the test 

tube, creating the objects center axis. The center axis provides the angle at which the 

test tube is oriented in 2D space. A transformation from the april tag on the robot’s 

wrist to where the tube is grasped to find a starting point. Using the center axis angle, 

we project a point along the axis to estimated tip of the tube, shown in Figure 9.  

 
Figure 9: 2D projection of where the algorithm estimates the tip of the test tube 

In order to correct the angle of approach for the peg-in-hole task, we treat the 

projected point as an origin for the world with the +Z axis normal to the tip of the test 

tube, Figure 10. With this new world origin, we compare the angular difference 
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between the gripper’s +Z axis and the new origin’s +Z axis. The difference represents 

the change necessary to complete the peg-in-hole task successfully. 

 
Figure 10: 3D and point cloud showing the estimated orientation of the test tube in relation to the robot's 

gripper 

 
4. DISCUSSION AND CONCLUSIONS  

At this point, we are able to perform all the necessary actions to successfully 

complete a peg-in-hole task. This includes identifying each index in relation to the 

test tube array april tag. The gripper is able to move to each index and grasp a test 

tube. The algorithm will then run and the orientation of the test tube would be 

detected. We have not finished the procedure to replace the test tube to a specified 

index. Nevertheless, how we plan to implement that transition has been explained 

above. We do not foresee any more fundamental issues that would keep us from 

finalizing a full demonstration. It is more of a matter of combining the pieces of code. 

 

In conclusion, we are very excited about what we have accomplished so far with the 

software. We have new directions in mind and will be working towards some of the 

recommendations below. 

 
5. RECOMMENDATIONS 

We made a number of assumptions and there are a few new challenges we could 

overcome to make this algorithm more robust. 
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By using a black background, we eliminated any background noise that could alter 

the Hough transform and Canny detector results. It would be best if we could find a 

way to make the background invariant to the detection algorithm. There are several 

computer vision techniques that could possibly work to eliminate the background 

from each of the frames in the algorithm processes. 

 

At this moment, the object orientation detection algorithm works with a painted test 

tube. The test tubes are naturally transparent plastic. The detection needs to be able to 

identify the dimensions of a test tube that is transparent and unaltered. Our initial 

attempts to run the preliminary detection processes were unsuccessful on transparent 

tubes, which was why we elected to paint the test tube white for the sake of time. 

 

We still have not fully integrated our algorithm with a peg-in-hole demonstration. A 

demo would be the most direct way to prove that the algorithm works with a high 

efficiency rate.  

We also want to collect metrics of how efficient and accurate the algorithm is 

working. Primarily, it is important to recognize the error in the tip estimation, because 

a slight error can result in an unsuccessful peg-in-hole attempt. We also want to see if 

it is more accurate to continue using the stereo camera or the robots arm camera for 

identifying the test tube array and its indices. 
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