Piezoelectric Polyvinylidene Fluoride Nanofibers

Presented by: Jerrell K. Walker University of Pennsylvania studying electrical engineering Advisor: Prof. Jorge J. Santiago-Avilés SUNFEST REU 2015

Purpose

- Piezoelectric nanofibers will be tested as a replacement for hair cells in the cochlea.
- The overall project is designing a solution for hearing loss using nanofibers.
 - Applicable when the patient has missing or dead hair cells.
 - Requires the auditory neurons to be undamaged.

Application

- The nanofibers would be used for the 200-2000 Hz range.
 - Human speech.

Competition

- A current solution for hearing loss is cochlear implants but they require an invasive surgery.
- Both solutions provide a way to stimulate the auditory neurons.

Preparation

- Electrospinning was used to create nanofibers of PVDF.
- Requires a collector, syringe, solution, and a high voltage source.

END

Goal

- What did I want?
 - Piezoelectric nanofibers for a medical application.
 - Needed fibers with a diameter of 100 nm to promote self-poling in PVDF.
 - (Aligned structure of the fibers that provides the piezoelectric response we need.)
- How did I approach it?
 - Used electrospinning.
 - Good for fiber fabrication.
 - Expect size distribution to be log-normal

How Did I characterize?

0

Scanning Electron Microscopy. (SEM)

Notice the randomly aligned fibers after disposition.

16 weight percent PVDF dissolved in DMF.

• Hair cell picture from

http://wps.prenhall.com/wps/media/object s/489/500888/images/FG43_04.JPG Cochlea picture from https://classes.lt.unt.edu/Spring_8W1_201 4/CECS_5420_080/epb0021/tonotopic_c ochlea.jpg

Material

- My responsibility is to produce the piezoelectric nanofibers for the project.
 - Polyvinylidene Fluoride is an attractive choice for the fiber material.
 - Considered a biocompatible polymer.
 - Desire self-poled fibers to provide a good piezoelectric response.
 - The domains of the material should be well aligned.
 - This leads to a size constraint. A fiber diameter of 100 nm.