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Abstract— A small stereo camera is a light and 
economical solution for obstacle detection and 
avoidance for unmanned air vehicles (UAVs). It is 
possible to create depth maps of a scene given a 
pair of stereo frames from such a camera. 
However, the  smaller and  lighter the stereo 
camera, the smaller its baseline, which in turn 
limits its ability to discriminate objects that are 
farther away. Maximizing the effective range of 
the stereo setup is essential for real-time 
applications, where quick decisions need to be 
made to avoid obstacles approaching the UAV. To 
overcome this difficulty, we use knowledge of the 
camera’s position over time to mimic large 
baseline disparity calculations, a technique we 
have dubbed “geometric stereo.” This paper 
outlines a simulation that shows that this 
technique is able to obtain better results for depth 
estimation with smaller confidence intervals than 
those obtained by simply averaging discrete depth 
maps over time. 

 
Index Terms— Geometric stereo, Obstacle 
detection, Robotics, Simulation, Small baseline 
stereo, Stereo vision UAV 

 
I. INTRODUCTION 

 
Unmanned air vehicles (UAVs) are used in 

both military and civilian contexts, aiding in tasks 
from search and rescue missions to structural 
inspections of power lines and bridges [1][2]. In 
order to effectively accomplish these tasks, UAVs 
must be able to adapt their flight paths in 3D space in 
order to avoid detected obstacles in both static and 
dynamic environments. To meet real-time application 
goals, it is necessary for the UAV to meet size, 
weight, and power (SWAP) constraints. Both laser 
sensors (LiDAR) and cameras have been used by 
UAVs capable of working in real-time. However, 
while obstacle detection using LiDAR has proved 
successful for both ground and air based vehicles [4], 
LiDAR cannot meet SWAP constraints. One example 

of a small commercially available LiDAR which 
could be mounted on a UAV is the Hokuyo UTM- 
30LX. It weighs 370 grams, consumes 12V at 
0.7amps, and is 60x60x87mm. Though the laser is 
precise, using LiDAR for real-time applications on a 
small UAV cannot be ideal due to these limitations. 
On the other hand, stereo cameras are smaller, 
lighter, and consume much less power, making them 
more attractive for this task. 

Computer vision is a field that focuses on 
enabling machines to mimic the high-level perceptive 
power of humans. A stereo camera, paired with 
computer vision algorithms, can therefore provide a 
sensor that better meets SWAP constraints while 
accomplishing real-time tasks. Through the 
combination of stereo and visual odometry, two 
vision techniques, we hope to maximize how quickly 
a UAV can move while accurately avoiding 
obstacles. Since we wish to minimize SWAP 
constraints, our stereo camera must be as small as 
possible. This caveat means that the baseline, or the 
distance between the two lenses, limits the distance 
the camera can “see.” There is an inherent trade-off 
between the baseline and accuracy of a stereo 
camera. To make depth measurements of a scene, a 
stereo algorithm must correctly match points between 
the left and right views from each lens. While a larger 
baseline stereo camera can detect objects farther 
away, it also makes it more difficult to match points 
correctly, which lowers the accuracy of depth results. 
We therefore use a stereo camera with a small 
baseline, for its greater accuracy, lighter weight, 
smaller size, and smaller power consumption. 

We show through simulation that it is 
possible to compensate for the short range of a small 
baseline stereo camera by integrating knowledge of 
camera pose with our images to mimic the results of 
a larger-baseline stereo system. By then integrating 
this system onto an onboard graphics processing unit 
(GPU) for parallel processing of stereo feature 
matching, we can produce a UAV that better meets 
SWAP constraints, and is also able to more 
effectively build an accurate 3D representation of the 
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Figure 1– From left to right: a small quadcopter UAV (DJI F450), the Jetson TK1, and the DUO-MLX. The DUO-MLX has a small 30mm 

baseline, and a 2.0mm focal length. 

 
world around it. This UAV can then be purposed 
towards accomplishing tasks such as search and 
rescue with improved speed and accuracy. 

To accomplish this goal, we choose to use 
the DUO-MLX stereo camera, pictured in Figure 1. 
The simulation's parameters are based upon the 
specifications of this small stereo camera. This 
specific camera was chosen for being light at 12.5g, 
small at 52.02x25.40x13.30mm, for featuring a wide 
field of view (FOV) at 170 degrees, for only 
consuming 5V at 0.5amps, and for having a built-in 
inertial measurement unit (IMU). We will integrate 
the DUO-MLX with the small Jetson TK1 board, 
which has GPU processing capabilities, for speed. 

 
II. BACKGROUND 

 
2.1 Stereo Vision 

Stereo vision is a tool used to gather depth 
information from a pair of left and right images, 
mimicking the binocular system of human vision. 
Once the camera is calibrated, the left and right 
images are rectified, a process that simplifies the 
geometry of the scene, and places matching features 
across the left and right images along the same 
horizontal lines. It is then possible to determine the 
physical depth of pixels in an image by calculating 
each pixel's disparity, the difference between the 
location of the pixel in the left image and the right 
image. To obtain disparity measurements, it is 
necessary to correctly match pixels between the left 
and right images. This hard problem has typically 
been solved using feature or featureless methods. For 
example, some researchers have employed the Small 
Vision System (SVS) stereo engine, which uses 
feature matching to generate depth maps [3]. Others 
have forgone features and instead use dense or semi- 
dense methods that make use of most or all of the 
pixels in each image [6][7][8]. In [8], researchers 
suggest comparing temporal and spatial gradients to 
quickly discern disparity measurements. These 
featureless methods typically rely upon exploiting 
camera motion to estimate where pixels have moved 
across image frames. 

A sufficiently accurate depth map allows the 
UAV to determine which points are closest to the 
stereo camera in the scene, and therefore what 
obstacles must immediately be avoided. Stereo 
cameras have been used for obstacle detection in 
[1][2][3][4]. In section three, we will explore some of 
the basic mathematical details of stereo. 

 
2.2 Visual Odometry 

Visual odometry is the process of estimating 
the orientation and location of a camera based on the 
camera’s video feed. With this tool, it is possible to 
determine the relative 3D locations of both points in 
images and the location of the camera, and therefore 
help an autonomous robot navigate through an 
unknown environment. Visual odometry typically 
locates and tracks features across image frames, and 
then uses their motion to calculate the essential or 
fundamental matrices, which through standard value 
decomposition (SVD) will produce the rotation 
matrix and translation vector that describe how the 
camera has shifted from one frame to the next. The 
essential matrix uses calibrated camera information 
to determine the rotation and translation information 
between frames. The fundamental matrix, which can 
be used with uncalibrated cameras, uses projective 
geometry to determine a line along which one point 
in the first image may be found in the second image 
[9]. However, more recent literature details a method 
for visual odometry that bypasses feature extraction 
entirely [6][7]. 

 
2.3 UAV Obstacle Detection 

Several different methods have already been 
applied to UAV obstacle detection and avoidance, 
which use both monocular (single camera) and stereo 
(dual camera) systems. In [1], objects close to the 
stereo camera are isolated by segmenting depth maps. 
Another group combines frontal stereo vision with 
two side-facing fisheye cameras using optical flow to 
avoid both objects in front of and walls to the sides of 
the UAV [3]. 

Simpler monocular systems detect and track 
features in image frames from video feed, relying on 
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optical flow to situate a sparse number of these 
features in 3D space. The features are then clustered 
based on their relative distance from one another, 
determining the areas for the UAV to avoid [5]. 
However, the current state-of-the-art in robotic 
obstacle avoidance arguably lies with SLAM 
(simultaneous localization and mapping), where a 
robot builds and navigates within a map of its 
unknown surroundings using monocular vision 
[6][7]. In [6], LSD-SLAM (large-scale direct 
monocular SLAM) sidesteps feature extraction, 
which can be a time-consuming process, and instead 

baseline  stereo  results  while  achieving  real-time 
performance. 

 
III. GEOMETRIC STEREO ALGORITHM 

 
3.1 The Problem 

We need to be able to compensate for the 
limited range of a small baseline camera, because its 
small size, weight, and power consumption is integral 
for optimizing our UAV. The equation to model a 
stereo setup can be determined by exploiting 
properties of similar triangles (see Fig. 2): 

uses   every   pixel   in   every   frame,   performing 
optimization  on  actual  images.  The  goal  of  this 

𝑍𝑍 = 𝐵𝐵𝑓𝑓 
� (1) 

system is to construct a large-scale depth map over 
time by tracking the camera’s position and estimating 
its current pose through a series of frames, then using 
these frames to imitate a stereo system and calculate 
depth maps. These depth maps are refined, and then 
integrated into the large-scale depth map, which is 
finally optimized. The camera’s pose in 3D space is 
estimated by referencing the dense depth map. The 
system is capable of running in real-time, however, 
since it is ultimately based on monocular input, it will 
only be able to build a 3D model up to a scale factor. 
By using a stereo camera, we can mitigate this 
limitation, leading to accurately scaled 
representations of the 3D world. 

Unlike the previous literature, we will 
implement geometric stereo in order to improve upon 
monocular SLAM. We will be integrating scaled 
stereo depth maps from a small baseline camera with 
visual odometry information in order to mimic large 

where 𝑍𝑍 is the depth of the point in space, 𝐵𝐵 is  the 

baseline of the stereo system, 𝑑𝑑 is the disparity, and 𝑓𝑓 
is the focal length of the cameras. We then add a 

pixel error � to this disparity calculation, resulting in 
𝑍𝑍 =  𝑓𝑓 (2) 

�±𝛿𝛿 
Based on (1) and (2), there is an inherent trade-off 
between  accuracy  and  baseline.  As  the  baseline 
increases,   the   depth   at   which   we   are   able   to 
discriminate  objects  with  a  disparity  of  one  pixel 
increases. Also, as the baseline increases, the error 

term �  decreases relative to the constantly scaling 
signal term. However, there are limitations imposed 
by large-baseline stereo. The number of points shared 
by the left and right views decreases as the baseline 
increases, limiting the field of view of the system. In 
addition, the larger the baseline, the larger the range 
of disparities that must be searched through per pixel, 
which can drastically slow down the generation of 
depth maps. 

 
Figure 2– Similar triangle stereo setup. By using the properties of similar triangles, comparing the yellow and green triangles, we are able 
to derive the standard stereo equation. IL and IR are the left and right image planes, OL and OR are the left and right optical centers, B is the 
baseline, f is the focal length, P is the point in 3D space, Z is the depth, and uL and uR mark the pixel difference between where the ray to 
point P intersects each image plane and the camera axis. To set up the equation, simply let   = 𝐵𝐵−� and solve for Z, where 𝑑𝑑 =  𝑢𝑢 − 𝑢𝑢  . 

𝑍𝑍 𝑍𝑍−𝑓𝑓 𝐿𝐿 𝑅𝑅 
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Figure 3– Depth v. disparity prediction for the DUO-MLX. The groups of three red lines represent a true depth measurement, and its 

possible disparity error to the left and right. Because of the small baseline, a sub-pixel disparity error could mean the difference between 
thinking a point is 30m away or 54m away. 

 

 
Figure 4– From left to right, the raw images of the DUO-MLX, the rectified images, and the disparity map. The images were captured with the 
SDK and dashboard provided with the DUO-MLX. The disparity map illustrates the good capabilities of the camera at ranges under one meter. 

With the DUO-MLX, our small baseline 
stereo camera, measurements of points beyond 
approximately ten meters become very unreliable, 
since their accuracy heavily relies upon exact 
disparity calculations, which simply isn’t realistic 
(see Fig. 3). In practice the stereo imagery we are 
able to obtain is displayed in Figure 4. 

 
3.2 The Simulation 

We propose circumventing these small 
baseline limitations by using our knowledge of 
camera translation over time in order to imitate large 
baseline stereo results using our small baseline 
images. The simulation we use to demonstrate this 
plan implements a simple stereo scenario, adds noise 
and bias to measurements to better imitate real-world 
data, then compares the accuracy of depth 
calculations and the size of confidence intervals, for 
both averaging and geometric stereo methods. 

small-baseline depth maps to crudely obtain a more 
accurate depth estimation of a given scene. 
Averaging stereo does not integrate camera position 
data into its depth estimations. In turn, the term 
“geometric stereo” refers to using knowledge of 
camera position to mimic large-baseline stereo with a 
small-baseline system by taking one image from one 
position and one image from the second position to 
calculate a more accurate depth map (see Fig. 5). We 
will show that geometric stereo provides superior 
depth estimation results. 

 
3.3 Depth Error 

We create a simple scenario where two 
stereo cameras are separated by a purely horizontal 
translation and both focus on one point in 2D x-z 
space. The points 𝑢𝑢𝐿𝐿 and 𝑢𝑢  where the point will be 
projected on the left and right image planes of each 
stereo system will be determined using 

For  the  purposes  of  this  paper,  the  term 
“averaging stereo” refers to taking the average of two 

𝑢𝑢𝐿𝐿  = 𝑓𝑓 

𝑥𝑥𝑝𝑝−𝑥𝑥𝑐𝑐 

𝑍𝑍 , 𝑢𝑢𝑅𝑅  = 𝑓𝑓 

𝑥𝑥𝑝𝑝−𝑥𝑥𝑐𝑐−𝐵𝐵 

𝑍𝑍 

(3) 
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Figure 5– Averaging stereo takes two depth measurements from a stereo camera in two separate positions, while geometric stereo uses the outer 
image planes to mimic one large baseline stereo setup. 

 where (𝑥𝑥𝑝𝑝, 𝑍𝑍) is the location of the point  in space, (𝑥𝑥�, 0) is the location of the optical center of the left camera, (𝑥𝑥� + 𝐵𝐵, 0) is the  location  of  the  optical center of the right camera, and 𝑓𝑓 is the focal length of 
the cameras (see Fig. 6). We then add a noise term 

and a bias term to both 𝑢𝑢𝐿𝐿 and 𝑢𝑢𝑅𝑅, to get 
�̃�𝑢𝐿𝐿 = 𝑢𝑢𝐿𝐿 + � + � , �̃�𝑢𝑅𝑅 = 𝑢𝑢𝑅𝑅 + � + � (4) 

We  add  a  random  amount  of  noise   �   
between 
negative one and one pixel to each projection onto 
the image plane to better simulate pixel matching in a 
stereo matching algorithm. We also add a random 

bias � between zero and one pixel to each 

calculation 
in order to avoid the unrealistic zero-means scenario, 
where  we  would  theoretically  be  able  to  remove 
noise from our calculations by taking a large number 
of images of the same scene. 

To simulate the averaging technique, we 
calculate depth value error by taking the depths 
calculated by (1) for the left and right lenses, 
subtracting the true depth from each calculated depth 
to get the error of each calculation, then averaging 
these error results together. To simulate the 
geometric technique, we use the far left and far right 
image planes to get our first depth estimate, then we 
subtract the true depth from our estimate to get our 
error. Because of the noise and bias, each resulting 
depth error will change for every iteration of the 
simulation, so we run the algorithm 1000 times, and 
then produce histograms of our results. 

 
3.4 Confidence Intervals 

Stereo depth confidence intervals stipulate a 
range of values that should contain the true depth for 

 
Figure 6– Simulation setup. We obtain (3) by once again comparing similar triangles. The red and yellow triangles can be used to solve for 

𝑢𝑢, and the green and yellow triangles can be used to solve for 𝑢𝑢𝑅𝑅. 
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Figure 7– Confidence intervals with our setup. Given each cone coming from each optical center describes the confidence interval for that 
lens’ depth calculation, the dark area where all of the cones intersect is the overall confidence interval. 

a given point in space. The smaller the interval, the 
more certain we can be about the accuracy of the 
calculated depth. To determine confidence intervals 
in the simulation, we obtain intervals for each depth 
calculation, then overlap them to get the overall 
confidence interval. Each interval is determined by 

sporadic and widespread. The geometric results 
maintain high counts around the zero error area, but 
the averaging results quickly drop to low counts that 
in the depth ten scenario ranged from -1884.0 meters 
to 586.2657 meters. As we predicted, the geometric 
results   provide   better   depth   estimates   than   the 

the � term from (2), or [  𝐵𝐵𝑓𝑓 
�+ 𝛿𝛿 

,  𝐵𝐵𝑓𝑓  ]. Because 
negative 
�− 𝛿𝛿 

averaging results as the point in space moves away 
from the camera. 

depth would put the point behind the camera, if part 
of the calculated interval is negative, it is set to zero. 
We take the intersection of the intervals for the 
averaging technique, and the solitary interval for the 
geometric technique. We then compare the average 
size of these intervals over 1000 trials. 

 
IV. EXPERIMENTAL RESULTS 

 
4.1 Depth Error Results 

As pictured in Figure 8, we see that while 
for a small true depth of one meter, the averaging and 
geometric techniques return error on the same scale, 
as the true depth increases to five and ten meters, the 
geometric results maintain error of around a meter or 
less,  and  the  averaging  results  quickly  become 

 
4.2 Confidence Interval Results 

Our confidence interval results mirror our 
depth error results. In Table I, it is apparent that the 
average size of our confidence intervals increases 
much more rapidly for depths calculated using the 
averaging technique than for depths calculated using 
the geometric technique. The standard deviations of 
the intervals from the averaging technique also 
increase rapidly as true depth increases, making the 
depth calculations increasingly unreliable, especially 
at a true depth of ten meters. Our results indicate that 
our geometric results are much more accurate than 
our averaging results. 

 

 
 

Figure 8– Error of averaging and geometric techniques for varying depths, where error is depth minus the true depth. Plots are set to a [- 
10,10] range for clearer visual comparison. For Z = 1m, the averaging technique has a range of [-0.1410m,0.1487m] and the geometric 

technique has a range of [-0.0477m,-0.0345m]. For Z = 5m, the averaging technique has a range of [-2.1288m,18.4689m] and the geometric 
technique has a range of [-0.3676m,-0.0307m]. For Z = 10m, the averaging technique has a range of [-1884.0m,586.2657m] and the 

geometric technique has a range of [-1.0136m,0.3156]. The pixel error is � ± 1 pixel, the focal length is 380 pixels, the baseline is 0.03m, 
and the bias is between zero and one pixels. Notice that the spread of error values greatly increases for the averaging technique as the true 

depth of the point increases, while the spread of error values remains comparatively small for the geometric technique. 
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Depth (m) 
Mean Averaging Interval Size (m) ± 
one standard deviation 

Mean Geometric Interval Size (m) ± one 
standard deviation 

1 
0.0961 ± 0.0617 0.0069 ± 4.0129e-5 

2 
0.4003 ± 0.2793 0.0277 ± 3.2261e-4 

3 
1.0031 ± 0.7848 0.0623 ± 0.0011 

4 
2.0353 ± 2.1785 0.1107 ± 0.0026 

5 
3.4811 ± 4.8566 0.1731 ± 0.0049 

10 8.5002 ± 23.0214 0.6944 ± 0.0412 
Table I– Average confidence interval size for varying depths. If the minimum of the interval predicted negative depth, it was replaced 

with a zero. Notice that the averaging technique intervals not only drastically increase as the true depth increases, but their standard 
deviations also drastically increase. The geometric technique intervals remain under a meter, with small standard deviations for every 

true depth value in this table. 

V. DISCUSSION AND CONCLUSION 
 

We are able to show through simulation that 
using knowledge of camera motion through time to 
mimic large baseline stereo using a small baseline 
camera provides more accurate depth calculations 
than averaging small baseline depth calculations over 
time. Not only does geometric stereo provide depth 
calculations for large true depth results with 
consistently small error, but its calculations also have 
steadily small confidence intervals. The results of this 
simulation motivate tracking camera motion over 
time to generate more accurate stereo depth  data, 
with the ultimate goal of building a system that will 
give a confidence interval for each depth 
measurement, so it is easy to throw out or minimize 
the value of unreliable points. By implementing 
geometric stereo on the DUO-MLX camera, we will 
be able to mirror results from a camera with a larger 
baseline without its extra weight and power 
consumption, therefore meeting our SWAP 
constraints without sacrificing the accuracy and range 
of a larger system. 
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