Graphene-BN Heterostructures: An In-Plane Transistor

Alexander Hunt IV

Mentors: Carl Naylor and Zhaoli Gao Advisor: Professor A.T. Charlie Johnson

Moore's Law: In-Plane Moore's Law: In-Plane Moore's Law: In-Plane

Graphene

Atomic and Electronic Structure

Material Properties

Excellent electronic properties

High structural stability

Boron Nitride

Atomic Structure

Material Properties Large bandgap dielectric [insulator] Structurally and chemically compatible to Graphene

Graphene-BN Heterostructure Atmospheric Pressure Chapital Variation Growth Mech Daposition

The Third Ring

Importance **Conducting Channel** Hydrogen Etching BN etches away at high temperatures Low Temperature **Graphene Growth** Change the carbon source in order to limit the breakdown of the BN ribbon

The Result

Benzoic Acid ($C_7H_6O_2$)

Best Result to Date

Grown at 875°C

Acknowledgements

Thank you to all the members of the lab

NSF