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Abstract— Real-time electricity pricing and 

demand response has become a clean, reliable and 
cost-effective way of reducing peak demand on the 
electricity grid. Annual revenues to end-users from 
demand response markets are more than $700 
million, making demand response the largest virtual 
generator in use [6]. DR-Advisor, an open source 
software tool created at the University of 
Pennsylvania, acts as a recommender system for 
building’s facilities manager. Using historical data 
from a building, DR-Advisor uses data-driven models 
to suggest suitable control actions to meet the desired 
load curtailment during demand response events. 
Using data sets from several buildings on the 
University of Pennsylvania’s campus, we enhance the 
capability of DR-Advisor by adding plug-ins for 
data-preprocessing and energy analytics.  

 

I. INTRODUCTION 

 
Wholesale electricity markets in the United States all 

use some form of real-time locational marginal pricing, 
where prices are calculated based on the operating 
conditions of the electricity grid. During intervals of 
high electricity consumption or peak demand, electricity 
prices increase substantially, making power consumption 
both inefficient and extremely cost intensive for end-use 
customers. Figure-1 shows an example of the volatility 
in real-time pricing from the New England independent 
system operator. The nominal price of electricity starts 
out at $25/MWh but increases to $800/MWh on July 
20th, 2015 [5].  In an effort to reduce peak power 
consumption and decrease electricity costs, customers 
have begun to depend on demand response (DR). DR 
programs involve a voluntary response of a building to 
real-time price signal. In such programs, end-users 
receive a notification from the utility requesting a 
reduction in their electricity load during periods of peak 
demand. Customers curtail power consumption during a 
predetermined amount of time and as a result receive a 
 

 

financial reward [2]. To be able to take advantage of 
real-time pricing and DR programs, the consumers must 
monitor electricity prices and be flexible in the ways 
they choose to use electricity. The challenge for large 
buildings lies in evaluating and taking control decision at 
fast time scales. Buildings are complex systems with 
many interconnected subsystems operating 
independently of each other.  HVAC systems, chillers 
systems and lighting systems all operate independently 
of each other, making it difficult to analyze and 
synthesize to effect of any control action on system 
behavior.  

 

 
Figure 1- Real time electricity prices from New England 
ISO during 07/20/2015 

 
DR-advisor uses regression tree-based algorithms to 

predict power consumption of large-scale commercial 
buildings in real time. These models are then used to 
create suitable control and scheduling strategies to meet 
the desired curtailment during a DR event. The problem 
is that data-driven model predictive accuracy depends of 
the quality of the data used for training the model. 
Building management systems consist of thousands of 
sensors embedded in the systems that control the internal 
environment, which often break or go offline causing 
noisy data.  My work this summer consisted of creating 
a framework for data preprocessing which takes 
historical data files from any Penn building processes 
them to create suitable structure for training of data-
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driven model. Processing includes outlier removal and 
interpolation. I also developed the capability to perform 
energy analytics on regression trees. This was the first 
step in designing a query system for the facilities 
managers. I then evaluated my contributions with data 
sets containing power consumption data for buildings on 
the University of Pennsylvania campus.  

II. BACKGROUND 
 
Electricity generators and utility companies use real-

time locational marginal pricing, making electricity costs 
exceptionally sensitive to human behavior and extreme 
weather conditions.  This translates into electricity prices 
dozens of times more expensive for end-users. For 
instance, at the University of Pennsylvania, the nominal 
rate of $30/MWh increased to $817/MWh during a hot 
summer day in 2011, a 27-fold increase. The five most 
expensive days cost $1.47 million, accounting for 5.1% 
of the total bill [1].   

 

 
Figure 2: 2011 Hourly Real Time Market prices based on 
Location Marginal Pricing for PECO by PJM  

  
In order to make effective use of DR programs, end 

users must be able to both predict power consumption 
and take appropriate actions in real time. Currently, rule-
based and model-based strategies are the two most 
common approaches to responding to DR events. In 
rule-based strategies, curtailment is met through the 
implementation a pre-programmed plan. Although 
simple, the rule-based approach does not account for 
historical building or weather data. Rule-based strategies 
also lack any predictability capabilities. Model-based 
strategies rely on mathematically modeling a building 
and its equipment. The models are used to predict power 

consumption and to synthesize control strategies [3]. 
Buildings are complex systems with a large number of 
individual components that interact in a convoluted 
manner, making the creation of high fidelity models both 
time and cost intensive. In addition, complex models 
involve many factors that hinder the facility manager’s 
ability to interpret and synthesize data in a meaningful 
manner.  

 
DR-advisor uses a regression tree-based algorithm, 

whose innate characteristics make it a suitable strategy 
to meet the challenges that DR events pose. Below, I 
outline some of the unique advantages which make 
regression trees suitable for solving the challenges of 
demand response [4].  

 
• Fast computation times 
• Handle a lot of variables 
• Robust to missing data and outliers 
• Very easily interpretable  

  

 
Figure 3: Regression Tree created by fitrtree method    in 
MATLAB 

 

A. Data Description: 
 

Each regression tree needs to be trained on time-
stamped historical data. I worked with data for nine 
buildings on the University of Pennsylvania Campus. 
The buildings that were included were Annenberg 
Center, Annenberg School, Clinical Research Building, 
College Hall, David Rittenhouse Laboratory, Goddard 
Labs, Huntsman Hall, and Vance Hall. Each building 
had comma separated value (CSV) files with weather, 
schedule and building data. The data included 
information for approximately 18 months at a resolution 
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of 1 hour time-steps. The CSV files consisted of 17 
columns with proxy variables that included year, month, 
day of month, hour of day, building area and occupancy, 
weather variables including outside air temperature, dew 
point, relative humidity, incident solar radiation, wind 
speed, gusts speed, wind direction, heating and cooling 
degree days, and the power consumption in kW. 

 
 For some of the buildings, up to 25% of the data was 

either missing or considered an outlier. Instead of 
discarding valuable data, the goal was to create a plug-in 
for DR-Advisor that would remove outliers, and 
interpolate over missing data to improve model 
accuracy.  

III. CASE STUDY 
 

I will use College Hall to present a comprehensive 
case study. College Hall was the first building on the 
West Philadelphia campus and currently home of the 
President, Provost, School of Arts and Sciences, the 
Department of History and the Undergraduate 
Admissions Office. College Hall has 6 floors with a total 
gross area of 110,266 square feet. The CSV file for 
College Hall had historical data starting on the July 18th, 
2013 and ending on February 4th, 2015.  

 

 
Figure 4: College Hall 

 

A. Pre-Processing 
 

Using the MATLAB statistics and machine learning 
toolbox, I created scripts for each of the buildings that 
contained functions for the importation, outlier removal, 
and interpolation of data. The script imported the data by 
parsing the CSV file and assigning each of the columns 
to a variable. Predictor features were assigned to X and 
the power consumption values assigned to Y. I then 
created a function that calculated the mean (𝑥̅𝑥) and the 

standard deviation (𝜎𝜎) of Y. 
 

𝜎𝜎 =  �∑(𝑥𝑥−𝑥̅𝑥)2

𝑛𝑛
             𝑥̅𝑥 =  ∑𝑥𝑥𝑖𝑖

𝑛𝑛
 

 
Data samples that were two standard deviations away 

from the mean were deemed outliers and removed from.  
 

B. Interpolation 
 

For the interpolation of data, we had to make several 
assumptions in attempt to characterize missing data. For 
non-proxy variables and power consumption values, we 
took values of zero to be missing data. For power 
consumption values, the assumption is justified by the 
observation that under normal operating conditions, any 
occupied building will always be consuming power. For 
non-proxy variables, we found that zeros could indicate 
both missing and actual values. In the case of missing 
value, the interpolation would act as intended. In the 
case that we interpolated over actual zero values, it was 
expected that neighboring values would be close to zero, 
since weather data exhibits linear behavior at high 
resolutions. Therefore, the interpolated value tended to 
be close to zero. Overall, we found that interpolation of 
non-proxy variables led to higher model accuracy. 
Interpolation was not applied to proxy variables, because 
it was not possible to distinguish in between missing 
data and samples that had values of zero.   

 
After testing several interpolation methods, we found 

linear interpolation to be the most effective in handling 
long strings of missing values. I used the interp1 method 
from MATLAB, in which the interpolated value at a 
query point is based on linear interpolation of the values 
at neighboring grid points in each respective dimension. 
The equation is outlined below, where (𝑥𝑥, 𝑦𝑦) is the query 
point to be interpolated and (𝑥𝑥0,𝑦𝑦0) (𝑥𝑥1,𝑦𝑦1) are the 
neighboring data samples. 

 

𝑦𝑦 = 𝑦𝑦0 + (𝑦𝑦1 − 𝑦𝑦0)
𝑥𝑥 − 𝑥𝑥0
𝑥𝑥1 − 𝑥𝑥0

 

 
Power consumption training data for College Hall 

before and after outlier removal and interpolation is 
shown in Figure 4. 
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Figure 5: Left: College Hall Power Consumption before 
Processing. Right: College Hall Power Consumption 
after Processing 

IV. RESULTS 
 

The metric for prediction accuracy was the normalized 
root mean square error (NMRSE). NRMSE is the RMSE 
divided by the mean of the data. The RMSE represents 
the sample standard deviation for the difference between 
predicted values and observed values. To test the 
efficacy of outlier removal and interpolation, I trained 
models for all of the buildings with both raw data and 
pre-processed data. I then calculated and compared 
NMRSE values for models trained with both the raw and 
processed data. The NMRSE values are shown in Table-
1. 

 
Regressions trees tend to have high variance and may 

sometimes over fit the data. It is a tradeoff to be paid for 
estimating a simple model. In order to grow more stable 
trees, DR-Advisor uses several ensemble methods. The 
effects of pre-processing were evaluated on the 
following algorithms: single regression tree, k-fold 
cross-validated trees, and random forests. 

 
 
 

Building  Method  Before 
Processing 
NRMSE % 

After 
Processing 
NRMSE % 

College Hall Single Tree 21.84 14.05 
Cross-
Validated 
Tree 

17.39 11.50 

Random 
Forest 

12.27 11.23 

Vance Hall Single Tree 17.49 14.04 
Cross-
Validated 
Tree 

14.24 11.01 

Random 
Forest 

10.39 9.26 

DRL Single Tree 13.12 11.80 
Cross-
Validated 
Tree 

9.93 10.57 

Random 
Forest 

8.60 8.99 

Goddard Labs Single Tree 25.99 16.41 
Cross-
Validated 
Tree 

25.49 16.14 

Random 
Forest 

17.73 15.55 

Vagelos Labs Single Tree 68.87 44.28 
Cross-
Validated 
Tree 

68.15 43.98 

Random 
Forest 

68.38  43.18 

Annenberg 
School 

Single Tree 23.76 22.84 
Cross-
Validated 
Tree 

21.94 21.84 

Random 
Forest 

19.91 19.88 

Fisher and 
Duhring Wings 

Single Tree 43.58 31.40 
Cross-
Validated 
Tree 

39.09 26.97 

Random 
Forest  

34.77 23.61 

CRB Single Tree 19.36 5.20 
Cross-
Validated 
Tree 

10.61 4.54 

Random 
Forest  

8.04 3.34 

Annenberg 
Center  

Single Tree 29.31 29.46 
Cross-
Validated 
Tree 

28.49 27.81 

Random 
Forest  

27.88 28.05 

Table 1: NMRSE values for buildings on the Penn 
Campus 

 
Outlier removal and interpolation made significant 

improvements to the prediction accuracy of the models. 
College Hall saw an improvement of 35.7% for the 
single tree, 33.9% for the Cross Validated Tree, and 
8.5% for the random forest. Figure-4 shows prediction 
for each algorithm compared to the ground truth both 
raw and processed data.  
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Figure 6: Left: College Hall Power Consumption 
Prediction with Raw Data. Right: College Hall Power 
Consumption Data with Processed Data. 

 
It is important to note that proxy variables are 

important predictor of building power consumption. This 
is because they capture repeated patterns of occupancy 
and building operation. Figure-5 shows the importance 
of each of the predictor variables. Since neither outlier 
removal nor interpolation were performed on proxy 
variables, improvements were not quite as effective as 
they might have been had proxy variables been able to 
be processed.   

 

 
Figure 7: Feature Importance for training College Hall 
model 

 

A. Filtering of Model Predictions: 
 
Demand Response advisor uses the fitrtree MATLAB 

method to grow the regression trees. The fitrtree method 
works by recursively partitioning the feature space into a 
set of rectangles and then fitting a simple model in each 

one. The fitrtree method starts by considering input data 
and all possible binary splits on every predictor, and then 
selecting a split based on the best optimization criterion. 
It then repeats recursively until it meets a stopping 
criterion. Stopping criteria is met under two 
circumstances. The first condition is when the mean 
squared error (MSE) for the observed response in the 
node drops below some predetermined threshold. The 
second circumstance is when there are fewer than the 
minimum amount of observations in the node. The 
minimum amount of observations is predetermined by 
the user. A node that fits the stopping criteria is called a 
leaf node. Although a 1 data point-per-leaf minimum 
requirement can be assigned as the stopping criterion, a 
very large tree might over fit the data. Therefore, leaf 
nodes tend to have a set of data points within the 
partitioned space. By querying the data samples within 
each partitioned space, we can get insights into building 
behavior at selected levels of power consumption.  

 

B. Procedure: 
 
We find all the leaf nodes that lie within a user-

specified power consumption range. We then find the 
data points that lie within each of the leaves. The value 
of each feature is extracted from each data sample and 
added to a data structure that groups together values for 
equivalent features for all of the data points within the 
specified range.  

 
For the College Hall data, we split power consumption 

data into 10 different bins of equal width. We then 
grouped all of the data samples that lied within each bin. 
Figure-6 shows the average prediction of each leaf.  

 

 
Figure 8: Plot of Power Consumption Averages for Leaf 
Nodes in College Hall 
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For each of the bins, we calculated the confidence 

interval and support. Confidence interval and support 
give insight into the frequency and certainty in which the 
building will consume a specific amount of power. We 
also use it to find any rare events, occasions in which an 
event has less support but higher confidence.  

 
Figures with boxplots for each of the non-proxy 

predictor features were displayed. Each figure contained 
a boxplot for each of the bins. The boxplots provide the 
ability for users to see the distribution for each feature at 
a given power consumption. For example, the user could 
find under which temperature conditions the building 
would consume 90-100 kW of power. Figure-7 shows 
temperature feature distribution at each bin. For proxy 
variables, the three most frequently occurring values 
were calculated. The user can calculate, for example, 
what  

 
Figure 9: Boxplots of Temperature for each of the Bins 
in the College Hall Data. 

 

V. CONCLUSION 
 

Electricity costs are the single largest component of a 
large commercial and industrial building’s operating 
budget. For such consumers, buying and reacting to real-
time electricity prices is not as simple as paying a flat-
rate monthly bill. Their power consumption demands are 
sensitive to both human behavior and weather 
conditions. DR- Advisor, a software tool that acts as a 
recommender system for the building’s facilities 
manager, provides suitable control actions to meet the 
desired load curtailment while maintaining operations 
and maximizing the economic reward. We show that by 
preprocessing the incoming data, we dramatically 

improve the performance and accuracy of the models 
used by DR-Advisor. We also show that by querying the 
regression trees we make regression trees more 
interpretable by getting insight into building behavior 
not attainable otherwise. The developed plug-ins will be 
added to the DR-Advisor toolbox.  
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