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Abstract— Neonatal development is considered a complex 

process to monitor because, due to the inability of neonates to 

effectively communicate, the majority of the information about 

neonatal physiology needs to be extracted by electronic means. 

Studies have shown that information about an infant’s 

behavioral and physiological states can be acquired by analyzing 

parameters related to the sucking pressure and its frequency. 

Multiple attempts have been made in the development of devices 

capable of monitoring neonatal behaviors such as breathing and 

feeding. However, the use of those devices is usually limited 

because they are costly, bulky, and hard to use. This paper 

proposes a design of a convenient, mobile, and energy efficient 

monitoring system (Neonur) that could be easily assembled and 

attached to a baby nutrient bottle. The monitoring system is 

equipped with a pyroelectric breathing sensor constructed out of 

polyvinylidene fluoride films and a standard disposable micro-

electro-mechanical pressure sensor widely used in medical 

applications. The pyroelectric breathing sensor provides valuable 

information about the infant’s respiratory state by generating 

electric currents that are proportional to the magnitudes of the 

small changes in temperature on the films produced by the 

infant’s exhalation. Data gathered from the breathing and 

sucking pressure sensors is saved on the on-chip memory and 

later transferred to a computer via USB. The results indicate that 

this device is well suited for monitoring neonatal breathing and 

feeding characteristics, is easy to operate, and is cheap to 

produce. 

  

 

 

INTRODUCTION 

Feeding, as carried on infants, is a sequentially coordinated 

process that includes sucking, swallowing, and breathing. The 

sequential flow of the feeding mechanism makes feeding one 

of the most complex processes carried on infants 

At-risk and, quite often, premature infants do not only have 

problems with feeding but they also constitute a very 

considerable percentage of the total number of neonates 

annually. In 2009 only, almost 12% of all neonates born in the 

U.S. fall in the category of at-risk or premature infants [1]. 

To optimize health conditions for at-risk and premature 

infants, issues that can have long-term effects on health must 

be recognized and taken care of at an early stage of neonatal 

development. The complexities associated with the behavioral 

or physiological studies of neonates result from the 

incapability of neonates to effectively communicate with the 

care givers. As a result, many of the attempted solutions to 

 
 

neonatal development issues rely on technological means to 

gather meaningful information on physiological states of 

infants. Studies have shown that certain feeding characteristics 

such as the sucking pressure and the frequency at which it 

occurs encapsulates important information that can help 

determine an infant’s behavioral and physiological states. By 

analyzing successive sucking feeds or bursts in an infant’s 

feeding session, it becomes possible to identify specific 

feeding patterns that could generally be classified as normal or 

abnormal tendencies.  

In the U.S., a variety of technological solutions or devices 

for monitoring feeding characteristics of neonates have been 

developed from as early as 1963 [2]. Most of those devices 

were suitable only for research laboratories, were quite 

expensive, were not easy to assemble, and/or were 

uncomfortable to use. Figure 1 illustrates a device developed 

in 1963 by the Hospital of the University of Pennsylvania with 

the collaboration of the Children’s Hospital of Philadelphia. 

The device consists of a nutrient reservoir connected to a 

capillary which regulates the nutrient flow to a nipple. A 

pressure transducer measures the negative pressure due to the 

flow of the nutrient that results from a sucking action. 

 
Figure 1 : System to measure neonatal sucking by Kron, Stein, & Goddard 

 

Figure 2 shows a device that has been used by the 

Children’s Hospital of Philadelphia since the 1980’s. This 

multi-part device consists of an expensive processing unit 

wire-connected to a feeding apparatus. The device has a 

complex assembly structure and is time-consuming to clean 

after each feeding session. Also, the device has in total 13 

different parts and still is uncomfortable to use because it 

restricts motion when in use. 
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Figure 2: System developed by Litt and Kron in the late 1980’s 

 

Although technologically limited, this device is capable of 

providing informative data related to feeding such as the 

number of sucks in a burst (a fixed period of time constituted 

of several feeds) and the number of bursts in a feeding session. 

 It later became obvious that technological advances could 

be reasonably used in the design of a more advanced 

monitoring system and yet considerably easy to use. In 2008, 

Professor Jay N. Zemel, in collaboration with Medoff Cooper, 

Chen, and Rajendran, launched a design project geared toward 

the development of a monitoring system, later named 

NEONUR, with the end goal to have a simpler configuration, 

to be portable, to be easily maintainable, to be easy to operate, 

and to have an effective computer interface. Figure 3 below 

shows the initial design of the Neonur. 

 
Figure 3: Neonur 

The Neonur system consists of an adapted regular baby 

feeding bottle designed to house the feeding and breathing 

monitoring sub-system referred to as the actual Neonur. The 

overall monitoring system consists of three components: the 

feeding nipple, the nutrient bottle, and the measurement 

module. The feeding nipple and the nutrient bottle are 

standard components widely used in hospital nurseries. The 

measurement module consists of the sucking pressure sensor, 

the analog and digital circuitry, a fluid control valve, and a 

duckbill air inlet. The negative pressure applied to the feeding 

nipple due to suction is measured by the pressure transducer. 

The electric signal generated by the transducer is passed on to 

the microcontroller for acquisition, digital conversion, and 

storage. Although the current version of the Neonur device is 

capable of monitoring neonatal feeding characteristics, the 

device still has not successfully used a working and suitable 

breathing sensor. In addition, careful manipulations are needed 

to use the device as the system can be used only by someone 

with a strong technical background.. This paper proposes 

design solutions to commonly known communication issues in 

the Neonur and also proposes a better interfacing of an 

efficient breathing sensor constructed out of pyroelectric 

polyvinylidene fluoride films. 

I. BACKGROUND 

A. Pyroelectricity 

Pyro electricity is usually regarded as the ability of certain 

materials to generate electric signals when exposed to 

environmental temperature changes. Pyro electricity is 

exhibited only in crystallized non-conducting substances 

having at least one axis polar axis of symmetry [3]. A 

common usage of pyro electricity is in the design of 

pyroelectric thermometers, where temperature changes are 

determined by measuring the voltage induced by the 

separation of the charges in the pyro material. Another 

common use of pyro electricity is in the design of pyroelectric 

infrared sensors, the concept of which is very similar to that of 

pyroelectric thermometers. In the last decade, researchers have 

proposed the use of pyroelectric materials for battery charging. 

This paper proposes the use of polyvinylidene fluorine films 

(PVDF) for the design of the breathing sensor. The studies of 

electric properties of polyvinylidene films started a large focus 

on its piezoelectric properties. Figure 4 shows the PVDF used 

in the design of the breathing sensor next to a penny (U.S. 1-

cent coin). 

 
Figure 4 : Polyvinylidene film next to a penny 

When poled - placed under a strong magnetic field to induce a 

net dipole moment - the piezoelectric coefficient of 

polyvinylidene films reaches 7 pC/N, which is approximately 

10 times larger than that observed in any other polymer [4]. 

Also, polyvinylidene films show very efficient pyroelectric 

properties when poled, making them suitable for sensor 

designs. 
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B. Piezoresistivity 

The piezoresistive effect is the change in the electrical 

resistivity of a material due to an applied mechanical stress. It 

is important to note that Piezoresistivity is a linear coupling 

between mechanical stress or strain and electrical resistivity. 

This property is commonly seen in semiconductors (Si and 

Ge), heterogeneous solids, superconductors, thin-metal films, 

Schottky barrier diodes, and Metal-Insulator-Metal (MIM) 

structures. 

 When mechanical strain is applied on a semiconductor such 

as silicon, a change in the energy band is created thus resulting 

in a change of the material’s conductivity. Silicon and other 

semiconductors are frequently used for pressure measurement 

because of their sensitivity to mechanical strain. Generally, 

semiconductor sensors are encapsulated together with 

accompanying electrical circuits into small devices called 

Micro-Electro-Mechanical Systems. Figure 5 shows the 

Freescale MPX2300DT1 pressure sensor module used in the 

design of the Neonur. 

 
Figure 5 : Freescale MPX2300DT1 pressure sensor 

 

C. Microcontrollers and the PIC18F14K50 

Microcontrollers are essentially single-chip computers 

containing a processor core, memory, and I/O. A 

microcontroller usually incorporates other specialized 

components that are useful in embedded systems. For the most 

part, those components are serial ports (RS-232, USB, SPI, 

CAN, I2C, etc.), on-board memory (Flash, DRAM, SRAM, 

EEPROM, etc.), and analog I/O (ADC and DAC). The 

difference between a microcontroller and a microprocessor is 

that a microcontroller houses the processing unit and the 

peripheral units on a single chip whereas a microprocessor 

does not. The usage of microcontrollers can vary from one 

project to another. In general, microcontrollers are used in 

personal information products (cell phones, pagers, watches, 

calculators, etc.), in laptop components (modem, sound card, 

mouse, keyboard, etc.), in home appliances (alarm clock, air 

conditioner, remote controls, refrigerators, microwaves, etc.), 

in smart cards, in implantable medical devices, in toys, in 

automobile control systems, and in most devices with 

keypads. Microcontrollers are generally grouped into families 

based on the number of bits that are used as a unit – a word - 

by the processor. Modern processors usually have word sizes 

of 8, 16, 24, 32, and 64 bits. Although microcontrollers 

usually ship with a variety of built-in peripherals, all 

microcontrollers do not usually have the same peripherals 

built-in them. However, almost every microcontroller in the 

market has an internal memory, a clock, a CPU, Input/Output 

(I/O) capabilities, timers, interrupt controllers, and Analog-to-

Digital Converters (ADC). 

 

 C.1. Clock 

 

 The microcontroller clock is the component that 

synchronizes the rate of execution of the program instructions. 

The pulses generated by the clock enable harmonic and 

synchronous operation of all the microcontroller’s 

components. Some program instructions take exactly one 

clock cycle to execute while others require a couple clock 

cycles to execute. 

Most clock sources for built-in microcontroller clock modules 

are based on the RC oscillator design. However, for time-

critical operations, most designers use external clock sources 

such as standalone crystal oscillators, ceramic resonators, or a 

combination of crystals and microcontroller’s built-in 

oscillator circuitry.  

 

 

C.2. CPU 

 

 The CPU is commonly regarded as the “brain” of the 

microcontroller. It is the unit that executes the arithmetic, 

logic, and control instructions. Before executing any 

instruction, the CPU first fetches the instruction and the data 

to use in the operation on the data bus. 

 CPUs usually have a maximum clock rate at which they can 

reliably operate. As an example, the PIC18F14K50 

microcontroller used in the design of the Neonur has a 

maximum clock speed of 12 MIPS (Million Instructions Per 

Second). Figure 6 shows the PIC18F14K50 used in the 

Neonur. 

 
Figure 6: PIC18F14K50 from Microchip, picture by author 

 

 

C.3. Input / Output (I/O) 

 

 A significant difference between a microcontroller and a 

microprocessor is that a microcontroller has built-in hardware 

to deal with the external world. The microcontroller 

communicates with the world outside of it by its I/O lines. 

Most microcontrollers have more than a single I/O line and 

those I/O lines can be configured as input lines, for reading 

states from the outside world, or output lines. 

 

C.4. Timers 

 

 Timers are internal clocks in the microcontroller. They 

provide a sense of time and duration during program 

execution. Usually, timer functionalities are provided at a 
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clock rate that is a fraction of the system or main clock. In 

most microcontroller designs, timers are used as 8-bit timers 

or 16-bit timers. 8-bit timers can count from 0 to 255 whereas 

16-bit timers can count from 0 to 65535. Using a reliable 

clock source, a good delay mechanism can be designed using 

timers. Most of the delay mechanisms implemented in the 

Neonur design use timers. 

 

C.5 Interrupt Controllers 

  

 Interrupts are a mechanism which enables the 

microcontroller to respond to specific events, regardless of 

what the microcontroller is executing at that time. When an 

interrupt occurs, the microcontroller stops executing the 

current program flow and branches out to the interrupt 

handling routine. After the interrupt is handled, the 

microcontroller resumes program execution from the point 

where the interrupt occurred. Many of the microcontroller’s 

functionalities are accomplished with the use of interrupts. 

 

C.6. Analog-to-Digital Converters 

 

 In general, the signals generated by different objects in 

nature are analog. Microcontrollers, instead, are capable of 

detecting or reading binary signals. Binary signals provide 

information only about two defined states: ON or OFF (1 or 

0). For TLL-based microcontrollers powered from 5 volts, an 

ON state could be any voltage below 2.5 volts whereas an 

OFF state could be any voltage above 2.5 volts. Luckily, 

microcontrollers have a built-in device into them that allows 

conversions of analog signals to a range of values that can be 

used in the microcontroller program. An Analog-to-Digital 

Converter (ADC) is very useful tool that maps analog voltages 

to numbers that can be used in electronics to interface to the 

world around us. With an ADC module, one can add sensors 

to their design and control the behavior of a system based 

physical quantities such as temperature, strain, light, sound, 

distance, etc. One of the most important characteristic of an 

ADC is its resolution. Resolution is a measure of how 

sensitive an ADC is to changes in the input signal. A 10-bit 

ADC module is more sensitive than an 8-bit ADC module. An 

8-bit ADC module is capable of detecting 256 discrete analog 

levels whereas a 10-bit ADC module is able to detect 1024 

discrete analog levels. Assuming that the microcontroller is 

powered from a 5-volt source, an 8-bit ADC module would be 

sensitive to voltage changes of the order of 0.02 volts or 20 

mV ( 5 volts/256 ). This suggests that the ADC module does 

not differentiate a 0 mV signal from a 19 mV signal. However, 

a 10-bit ADC module would sense voltage changes of as much 

as 0.005 volts or 5 mV. But still, the ADC module would not 

differentiate a 0 mV signal from a 4 mV signal.  

 

In order for programs to be stored on the microcontroller and 

for the microcontroller to execute its tasks properly, most 

microcontrollers are equipped with internal memory as either 

Flash, EEPROM, PROM, EPROM, ROM, and RAM 

memories. The microcontroller memory is usually divided into 

two separate memory blocks: data memory and program 

memory. The program memory is the location where the 

firmware (the program that runs the microcontroller) is stored. 

All temporary storage locations including calculation results 

and variables are located in the data memory. 

 For a successful use of the microcontroller, special memory 

locations are reserved for the microcontroller operations. 

These are called Special Function Registers (SFRs). SFRs are 

extensively used with peripherals built-in the microcontroller. 

For example, the ADCON0 register of the PIC18F14K50 

microcontroller stores information about when an Analog-to-

Digital conversion is completed. The ADRESH and ADRESL 

registers store the actual ADC conversion result.  

 

D. Serial Peripheral Interface (SPI) 

 

The SPI is a synchronous serial interface in which data, in 

8-bit streams, is shifted in or out one bit at a time. In electronic 

designs based on microcontrollers, SPI can be used to 

communicate with a serial peripheral device or another 

microcontroller with an SPI interface. The SPI runs in a full-

duplex mode meaning that the device implementing the SPI 

protocol can both receive and transmit data. An SPI device 

usually has 4 wire connections: Clock line, Serial Data Output 

line, Serial Data Input line, and the Chip Select line. The 

Serial Data Output line is used by the device to send packets 

of data out to another SPI device one bit at a time. The Serial 

Data Input line receives data packets sent from another SPI 

device one bit at a time. Usually, devices communicate in 

Master/Slave mode where the master device initiates 

communications. In that case, the master device is responsible 

for providing a Clock source to the slave device. The master 

device initiates communications by selecting an SPI device to 

communicate with. This is done my manipulating the Chip 

Select pin line. When driven low, the Chip Select pin state 

allows the slave device to respond to the master device’s 

requests or commands. In master/slave mode, multiple devices 

can be configured as slaves working with a single master 

device. In that case, all the slave devices can share the Serial 

Data Output line, the Serial Data Input line, and the Clock 

line. The master device needs to provide separate Chip Select 

lines for each individual slave device. The M25P16 external 

flash memory used in the design of the Neonur implements the 

SPI protocol. Figure 7 below shows the M25P16 memory chip 

used in the Neonur. 

 
Figure 7: M25P16 from Numonyx, picture by author 

 

Care must be given to the design of system that 

implements the SPI protocol because communications 

between devices are initiated by changes in the states of 

devices’ pins. Most of the issues with the SPI protocol arise 

when a pin is not defaulted to a known state. For example, if 
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the Chip Select pin is not pulled high initially, communication 

between devices would be compromised as the slave device 

might be selected while the master device did not intend to 

initiate a communication. 

 

E. Universal Serial Bus (USB) 

 

The Universal Serial Bus is a set of connectivity industry 

standards that define communication protocols used in 

communications between computers and electronic devices. 

The standards also define the connectors, the cables, and the 

electrical requirements that USB designers have to comply 

with for better device functionality. The USB specifications 

support four different bus speeds at which devices can operate. 

At Low Speed, introduced in USB 1.0, devices can 

communicate and transfer data at the maximum rate of 1.5 

Mbps. At Full Speed, also introduced in USB 1.0, data 

transfers can occur at a maximum speed of 12 Mbps. The 

High Speed and SuperSpeed rates allow devices to 

communicate and transfer data at maximum rates of 

respectively  480 Mbps and 5 Gbps. The different speeds 

allow developers to select a speed range that is appropriate to 

the functionalities of a specific device. Also, devices running 

at a higher speeds can usually work on platforms supporting 

only lower speeds. Backward compatibility is strictly enforced 

by the USB specifications. 

 

E.1 Advantages of USB 

 

USB exhibits advantages and benefits for both device end 

users and developers. For end users, USB offers an easy-to-

use interface. For the most part, users do not intervene in the 

computer setup of a USB device. When a user connects a USB 

device to a computer, the operating system on the computer 

recognizes the attachment of the device and automatically 

loads the appropriate driver for the device. Another major 

benefit of USB is its protection against data corruption. The 

USB protocols enable identifying data errors and notifying the 

sender to retransmit. Additionally, USB devices are usually 

built with power saving considerations. Reduced power 

consumption increases battery life for battery-powered 

devices, thus helping user to save money. 

 

On the developer side, USB offers four different speeds and 

transfer types that can accommodate a variety of peripherals. 

Arguably the most important advantage of USB for developers 

is the support provided by operating systems. The different 

tasks performed by operating systems include detecting when 

devices are attached and removed from a computer, 

exchanging with newly connected devices to find out how data 

should be transferred, providing a link that enables software 

drivers manage communications between the USB device and 

computer programs that want to communicate with the device. 

 

E.2 Disadvantages of USB 

 

Although equipped with a variety of useful capabilities, USB, 

like any other interface, has several limitations. Perhaps the 

most fundamental one is its restriction on the distance between 

the device and a host. USB was designed as an expansion bus 

where devices are close to the computer or host. To allow 

longer distances, self-powered bridge devices are often used. 

Another limitation to the USB interface is the inability to 

broadcast. USB does not support sending data simultaneously 

to multiple devices. Usually, the host must send data packets 

to each device individually. Additionally, USB restricts all 

communications between a host and a device. The host might 

be a personal computer or any other device with host-

controller capabilities. This suggests that Peer-to-Peer 

communications are not supported under USB. Hosts cannot 

talk to each other directly and devices cannot talk to each 

other directly.  

The USB 3.0 specification however provides solutions to 

some of the USB limitations. For instance, The USB 3.0 

allows developers to design systems using timestamp packets 

for the host to simultaneously communicate with multiple 

devices. The USB On-The-Go (OTG) option offers a partial 

solution to the Peer-to-Peer communication limitation. With 

USB On-The-Go, a device can function both as an end device 

and a host. This allows devices to communicate directly with 

other devices. 

Arguably the most intrinsic challenge with USB is the 

protocol complexity. Extensive firmware is needed on the 

device to properly exchange on the bus. Also, although major 

operating systems do provide support and generic drivers for 

application development and communication with USB 

devices, vendor-specific drivers are usually required for 

augmented device capabilities not supported by the USB 

generic drivers offered by the operating system. 

In addition to all the complexities and limitations, USB 

requires the use of a Vendor ID and a Product ID for a device 

to properly exchange with a host. Unfortunately Vendor IDs 

are not granted for free. The USB Implementers Forum (USB-

IF), the people in charge of the USB specifications, charge a 

fee of about $2000 for a Vendor ID. The owner of a Vendor 

ID further assigns Product IDs to different devices. Chip 

manufacturers such as Microchip and Future Technology 

Devices International Limited (FTDI) will assign a range of 

Product IDs to a customer for use with the company Vendor 

ID in their devices at no charge. However, there is usually a 

limitation in the number of customer devices that can use the 

company’s Vendor ID. 

 

E.3 Common Uses of USB 

 

 Today, USB can be used for any device that has computer 

interfacing design. However, many of the USB devices on the 

market usually implement at least one of the defined USB 

classes because most USB devices have much in common 

with other devices that perform similar functions. The 

standard USB defined classes are Audio class, 

Communication class (CDC), Content Security class, Device 

Firmware Upgrade class (DFU), Human Interface Device 

class (HID), IrDA Bridge class, Mass Storage class, Personal 

Healthcare class, Printer class, Smart Card class, Still Image 

Capture class, Test and Measurement class, and the Video 

class. Many devices are built on top of these classes including 

keyboards, pointing devices, digital cameras, printers, portable 
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media players, disk drives, network adapters, video game 

controllers, medical devices, and more. 

A class specification usually serves as a guide for firmware 

developers, application programmers, and driver developers. 

 

E.4 Getting a USB device to properly run 

 

Although a couple electronic components are needed for the 

design of a USB device, implementation of the USB protocol 

heavily relies on the firmware running on the device. Once 

connected to a host, the device firmware needs to be capable 

of identifying the device to the host (enumeration process). 

After device successful device enumeration, the device 

firmware needs to be able to handle data exchanges between 

the device and host. The exchanges include accusing reception 

of data packets, signaling errors in data transfers, properly 

responding to host requests, and managing power 

requirements set by the host. 

 

E.4.1 Device Enumeration 

 

Once the device is connected to the host, a couple 

transactions occur before the device can properly 

communicate with applications and drivers running on the 

host computer. Those transactions are meant to help the host 

learn about the device. The host needs to determine whether a 

device is a keyboard, a mouse, a speaker, a digital camera, a 

mass storage device, a printer, a network adapter, or any other 

defined type. After the host has learned about the device, the 

host assigns a proper driver to the device for further 

communications. Device enumeration is the process that 

accomplishes all the tasks mentioned above. The overall 

enumeration process consists of reading descriptors from the 

device, assigning an address to the device, assigning a driver 

to the device, and setting proper power requirements for the 

device. During enumeration, the device goes through a series 

of device states that shows progress in the process. Those 

states are the Powered state, the Default state, the Address 

state, the Attached state, the Suspend state, and the Configured 

state. During enumeration, the device must detect and respond 

to any enumeration request at any time. Also, the device 

should not assume any particular order in which enumeration 

occurs. However, in a typical enumeration, the process starts 

with the detection of the device attachment by the hub. The 

hub actually monitors the signal levels on D+ and D- lines. 

Initially, the D+ and D- lines are pulled down in the hub. A 

full-speed device would therefore pull up the D+ line, 

permitting the hub to identify the device as a full-speed 

device. Similarly, a low-speed device would pull up the D- 

line to notify the hub of the attachment of the low-speed 

device. After the hub has determined the nature of the attached 

device, the hub notifies the host of the attachment of the 

device and establishes a communication path between the 

device and the bus after resetting the device. Usually after this 

step, the host requests the device to provide different 

descriptors allowing the host to learn about the functionalities 

of the device, the number of interfaces the device implements, 

the meaning of the data sent by the device, the device power 

requirements, the device’s name and type, and the device’s 

manufacturer. Vendor IDs and Product IDs are used by the 

device to inform the host about the device’s manufacturer. 

After successfully learning about the attached device, the host 

usually assigns and loads an appropriate driver for the device. 

The majority of these tasks, if not all, are carried by the device 

firmware. Therefore, writing device firmware for USB 

communication is considered a difficult task by most 

developers. 

 

E.4.2 Device descriptors and endpoints 

 

Device descriptors, as the name implies, are device description 

structures that are sent to the host during the enumeration 

process. They contain the information that allows the host to 

learn about the device as a whole or about specific device 

capabilities. The most important descriptors are the device 

descriptor, the configuration descriptor, the interface 

descriptor, and the endpoint descriptor. Standard descriptors 

contain a bLength field (one byte) that provides the size of the 

descriptor in bytes. In addition to the bLength field, standard 

descriptors also contain a bDescriptorType field that identifies 

the descriptor’s type. 

As for most serial interfaces, data transfers are conducted 

between devices’ buffers. Usually, on one end of the 

communication bus, a device would put the data to transmit in 

a buffer. Data would then be sent on the serial bus bit after bit. 

On the other end of the bus, the receiving device would store 

the received bits in a buffer up until a byte or any other data 

size is received. Data buffers on the USB device side of the 

communication are called endpoints. Each endpoint on the 

USB device has an address consisting of an address number 

and direction. The USB specifications require at least one 

endpoint for successful communications with the host. This 

endpoint must have the address number 0. Endpoint numbers 

range from 0 to 15. Endpoint directions are either IN for 

storing data to be sent to the host or OUT for storing data 

received from the host. 

 

E.4.3 USB transfer types 

 

USB supports 4 different data transfer types which are control 

transfers, bulk transfers, interrupt transfers, and isochronous 

transfers. Control transfers are usually used by the host for 

enumeration and configurations. The host uses this transfer 

type to send requests to the device. In this type of transfer, 

data exchanges occur in both directions. Although control 

transfers are usually used for enumeration of devices, it can 

also support transfers of small amounts of data. In interrupt 

transfers, the host frequently polls the device to determine if 

the device is ready to send data to the host. Bulk and 

Isochronous transfer types are in a sense opposite types of 

transfers. In a bulk transfer, the data transfer rate is not 

guaranteed but data accuracy is preserved. In an isochronous 

transfer type, data transfer rate is guaranteed while data loss is 

permitted. A good example of devices that use bulk transfers 

is an audio speaker.  
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E.5 Human Interface Devices (HID) 

 

The Human Interface Devices (HID) is one the most used 

USB class for devices because the HID class supports a 

variety of devices such as keyboards, mice, and game 

controllers and also because the class allows development of 

devices that perform vendor-specific or custom functions. In 

Windows operating system, the HID class was one the first 

classes implemented [citation – Jan Axelson]. To use the HID 

class, a device does not have to have a human interface. 

However, the device has to implement the requirements of the 

HID class. In a typical HID class implementation, data 

transfers occur with the exchange of reports. Reports are 

fixed-length data structures. Also, a HID device can have only 

one interrupt IN endpoint for storing data to be sent to the 

host. 

 

For more information on the HID class and USB in general, 

readers are encouraged to take a look at Jan Axelson’s USB 

Complete book. This best-selling developer’s guide to the 

Universal Serial Bus covers all aspects of the USB interface 

including hardware design, firmware programming, and host 

application software development. 

 

 

II. IMPLEMENTATION 

 

II.1 Hardware 

 

The Neonur device consists of three main components, which 

are the feeding nipple, the nutrient bottle, and the core 

measurement module. The feeding nipple and the nutrient 

bottle are parts of the regular baby bottles found in most 

nurseries. Figure 8 below shows the different main parts of the 

Neonur device. 

 
Figure 8: Neonur device main parts, picture by author 

 

The core measurement module houses all the electronic 

components of the device. The main electronic components 

are the external flash memory chip, the voltage regulator, the 

sensors and instrumentation amplifier, the microcontroller, 

and the USB port. 

 

II.1.1 External flash memory 

 

The Neonur uses a 16-mega-bit external flash memory for data 

storage. The chip used is the regular M25P16 16 Mb serial 

flash memory unit from Numonyx. 

The Neonur is capable of carrying measurements every 5 

milliseconds. Each of the measurements consists of a pressure 

sensor reading and a breathing sensor reading. Each of the 

readings is stored as an 8-bit value. With these specifications, 

the memory chip is capable of storing 1,048,576 

measurements or 87-minute-long feeding cycle. 

Figure 9 below shows the M25P16 memory chip used in the 

Neonur and its pin configurations.   

 
Figure 9: M25P16 schematic, picture from Numonyx 

 

Pin 1, referred to as Chip Select pin, is pulled up to avoid the 

chip being selected at random. Pins 3 and 7, respectively 

referred to as WRITE_PROTECT and HOLD pins, are pulled 

up as well because neither the WRITE_PROTECT or HOLD 

functionalities are implemented by the Neonur firmware. The 

reason for this is that the memory chip has a built-in WRITE 

protection mechanism that requires specific wave forms to 

perform any write operation. Pins 4 and 8 connect to Ground 

and the positive voltage Vcc respectively. Pins 2 and 5 

connect to the microcontroller’s pins 13 and 9, which are the 

Serial Data Input and Serial Data Output pins respectively. 

The memory chip’s pin 6, referred to as the Serial Clock 

source, is connected to the microcontroller’s pin 11 (SCK). 

This pin receives the clock signal from the microcontroller to 

allow the memory chip to synchronize and exchange with the 

microcontroller. The Serial Clock pin on the memory chip is 

pulled down to avoid random fluctuations in the signal.  

This mode of operation between the microcontroller and the 

memory flash is also referred to as Master/Slave mode, where 

the microcontroller performs as the master and the memory 

chip performs as the slave. The microcontroller takes the 

Master responsibilities because it provides the clock signal to 

the memory chip and it also initiates all the exchanges with the 

memory chip. 

All pull-up and pull-down resistors used with the memory chip 

are valued 100 Kilo Ohms resistors. However, any value as 

low as 4.7 Kilo Ohms could still be used. The reason for the 

use of the 100K resistors is to limit the amount of current 

wasted by pull-down mechanisms to a very minimum. 

 

II.1.2 Voltage Regulator 

 

The Neonur device is powered by a 3-volt battery (CR-1/3N) 

during data acquisition. Once connected to the USB bus for 

data transfer, the power source is switched to USB. In this 

mode, the Neonur is powered from the USB bus. Two design 

concerns arise from this mechanism. First, careful attention 

needs to be given to the coupling of the two power sources as 

the USB specifications require that no current must be flow 

back to a host computer. To solve this problem, a switching 

mechanism is implemented. A switch is placed between the 

two power sources so that only one source can power the 

device at any given time. The second concern is that the USB 

bus provides a 5-volt signal whereas components such as the 

external flash memory can support only up to 3.6 volts. To 

resolve this concern, a voltage regulator is placed at the output 



 

8 

 

 

of the switch explained above. The voltage regulator ensures 

that the signal fed to the circuit will not exceed 3.3 volts, 

which is a voltage that all components on the board can safely 

work with. 

 

II.1.3 Sensors and Instrumentation Amplifier 

 

1. Sucking pressure sensor 

 

A pressure sensor module (Freescale MPX2300DT1) is used 

to record infant’s sucking activity. The Freescale sensor is a 

standard disposable micro-electro-mechanical module used in 

a variety of medical applications. 

The sensor pins were bent at 90 degrees to allow the sensor 

module to be easily interfaced with the circuit board. The 

sensor module is further glued with silicon glue to a frame that 

allows the sensor to be easily pluggable to the Neonur core 

frame. 

 

2. Breathing Sensor 

 

The pyroelectric breathing sensor is constructed out of 

pyroelectric films. In the design of the Neonur, a 

polyvinylidene film was used. The film is first mounted on a 

frame that is further attached to the nipple of the nutrient 

bottle. Figure 10 below shows the design of the breathing 

sensor. 

 
Figure 10: Breathing sensor design, picture by author 

 

 

 

 

3. Instrumentation Amplifier 

 

Signal conditioning for both the breathing sensor and the 

sucking pressure sensor was of high importance in the design 

of the Neonur. 

The Freescale pressure sensor outputs signal voltages in the 

range of 0 – 450mV. The voltages in this range are not well-

suited for use with the microcontroller’s analog-to-digital 

converter which has a broader range of 0 – 3 volts when 

powered from a 3.3v battery. The INA 2126 instrumentation 

amplifier is used to amplify the signal from the sensor to the 

microcontroller. However, the signal from the sucking 

pressure sensor is inverted so that measurements on large 

negative pressures could be recorded. 

As for the pyroelectric breathing sensor, the fluctuations in 

signal strength can be very large. Hundreds of volts can be 

easily obtained from the pyro films. However, the 

microcontroller ADC module does not tolerate voltages of 

more than 3 volts. To solve this problem, a couple techniques 

were used. First, the signal from the pyro sensor is rectified 

with the use of a Schottky-based bridge rectifier. This process 

makes the whole signal positive. Once the signal is rectified, a 

Zener diode is used to limit the output voltage of the pyro 

sensor to a suitable maximum voltage to be fed to the 

instrumentation amplifier. A resistor-capacitor pair is also 

used to filter the signal so that unwanted ripples can be 

eliminated.  

Figure 11 below shows the overall design of the Neonur as 

accomplished in Eagle CAD software. 

 
Figure 11: Neonur CAD design, picture by author 

 

 

II.2 Software 

 

For proper functioning of the Neonur, a firmware was written 

to assist the device with its tasks. In general, the firmware 

written for the microcontroller PIC18F14K50 has three major 

roles to play: Acquire data through the ADC module, allow 

data transfers between the microcontroller and the external 

flash memory, and finally communicate with the computer 

application for data upload through USB. All the code 

snippets provided in this article assume the following: use of 

PIC18F14K50 as the microcontroller and use of C18 as the 

compiler. 

 

1. Data Acquisition 

 

The Neonur device has a capability to perform a measurement 

every 5ms. To accomplish this task, it was necessary to create 

a software routine that would help in keeping track of this time 

interval. Figure 12 below shows a routine written in C 

programming language to help determine when the 5ms are 

reached.  
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Figure 12: timing routines in C, picture by author 

 

The routine consists of two functions. The first function 

timer_us_set() initializes a point in time when to start 

measuring time. The second function timer_us_wait()  allows 

the device to wait for the 5ms to be consumed before 

performing the next measurement. 

----------------------------------------------------CODE 

The code snippet provided above assumes that the device is 

running at 48 MHz. 

Along with timed measurements, the ADC module needs to be 

properly configured before any use.  

To use the ADC module, the sensor pins need proper 

configurations. In the case of the Neonur device, the breathing 

and pressure sensors are respectively pins 7 and 8 on the PIC 

microcontroller. Two things need to be done to properly 

configure these two pins. First, they need to be configured as 

analog pins by setting their respective ANSEL bits. Second, 

these two pins have to be set as input pins by setting their 

TRIS bits. Figure 13 shows the configuration of pins 7 and 8 

as analog input pins. 

 

 
Figure 13: Code snippet: configuring pins, picture by author 

 

After appropriate configuration of the sensor pins, it is 

necessary to configure the ADC module. The PIC 

microcontroller provides 3 registers that control the operations 

of the ADC module. Those registers are ADCON0, ADCON1 

and ADCON2. All the registers on the PIC18F14K50 are 8-bit 

registers. The ADCON0 register only implements 6 bits 

starting from bit 0, the rightmost bit, to bit 5 (sixth bit in the 

register). The first bit in ADCON0 register is the ADON bit 

which enables the ADC module. Usually this bit is the last bit 

set before starting data acquisition. The second bit, the 

GO/DONE bit, has two uses. It is used to determine the status 

of a conversion and also, when set, it tells the ADC module to 

start the A/D conversion cycle. Bits 2 to 5 are used to select 

the analog channel to use with the ADC.  In the case of the 

Neonur, channel 7 (AN7) and channel 8 (AN8) are 

dynamically selected. ADCON1 and ADCON2 registers 

control configurations of the voltage references, A/D data 

format, clock source, and acquisition time. More on the ADC 

registers can be found in the PIC18F14K50 data sheet. Figure 

14 below shows a code snippet of the configurations for 

registers ADCON1 and ADCON2 made for the Neonur. 

 
Figure 14: Setting up the ADC module, picture by author 

 

Once the ADC module is properly configured, it can be used 

to convert analog voltages generated by the pressure and 

breathing sensors to digital values that are stored in the 

memory chip. Figure 15 below shows a sample code snippet 

that illustrates how the ADC module is used with the external 

flash memory in a data acquisition process. 

 
Figure 15: ADC and timing routines, picture by author 

 

2. Data Storage 

 

After data has been successfully converted by the ADC 

module, it is stored in the on-board memory chip. To write to 

the memory chip, three things have to be done in this order: 

first the memory chip is selected, then the chip is made 

writable by sending the Write-Enable command, and finally 

data to store is transferred out. The line dedicated for selecting 

the memory chip is the pin 6 on the microcontroller. To select 

the memory chip for exchanges, pin 6 on the PIC 

microcontroller is pulled low. After pulling the pin low, the 

write enable command (0x06) is send to the device. Right after 

sending the write enable command to the memory chip, the 

chip select line has to be pulled high immediately. This feature 

is a security feature implemented in the M25P16 and many 

other serial flash memory units. To start the data transfer 

process, the memory chip needs to be selected again by 

pulling the select chip line low, then sending the write 

command (0x02) followed by the 24-bit address location 

where data should be written. Following the address is the data 

byte to write. The select line is pulled high again at the end of 

the transaction.  

Once data transfer complete, the memory chip starts the write 

process. During this time the chip cannot be accessed for any 
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write, erase, or read operations. However, the status register 

can be read to determine the status of the write process. 

 

3. Data Transfer 

 

Usually, after data acquisition, the Neonur module is plugged 

to a computer for data upload. In previous designs of the 

Neonur device, data transfers occurred on USART. This work 

changed the communication interface to use the USB bus. 

When the Neonur is attached to a PC computer, the PC 

application recognizes the device and allows the user to 

communicate with the device by sending instructions. Before 

USB can work on the device, there are a couple things the 

device firmware needs to accomplish. First of all, the device 

firmware needs to successfully go through the enumeration 

process with the computer. The firmware written for the 

Neonur is built upon the core USB stack provided by 

Microchip. As one would soon realize, writing a USB stack 

from scratch is a very complex and time-consuming task. 

Most microcontroller manufacturers provide core USB stacks 

to help developers build firmware faster. There is no change 

made to the USB core stack. The microchip USB core is 

usually used with the Microchip Application Libraries as is the 

case with the Neonur. Details on implementing the USB 

protocol are provided in the appendix. 

Once the PC application requests data from the device, the 

microcontroller reads the memory chip and transmits the read 

data in 64-byte packets. 

III. RESULTS 

The Neonur firmware is now capable of communicating with 

the PC application without any issues. The PC application is 

programmed so that it helps the users by guiding them step by 

step through the data transfer routine. With the 

implementation of the USB interface, the device can be used 

with any computer platform supporting USB. Also, no actions 

are required from the user regarding device setup on the host 

computer. Using USB, data transfer speed can go up to 480 

Mbps. The device firmware implements the USB HID class as 

specified by the USB specifications, thus allowing the device 

to function properly without any device firmware changes on 

major operating systems such as Linux, Mac OS, and 

Windows. 

The device has a minimum power consumption of about 75 

mW at idle state and 111 mW at full operation. During USB 

transfers, power is provided by the host computer, thus saving 

battery energy. It is also noticed that putting the device to 

sleep between consecutive measurements improves the overall 

device power consumption. 

The pyroelectric breathing sensor made out polyvinylidene 

fluoride films generates its own current, thus extending the 

battery life.  

IV. CONCLUSION 

The final Neonur product has not been manufactured yet, but a 

prototyping board in sunder construction. It will be necessary 

to test the device in a number of different conditions and 

ensure that the pyroelectric breathing sensor works as 

expected. 

The data uploaded from the device is parsed and saved in a 

text file in a way that is easy for the end user to copy and paste 

in plot-generating software packages. 

The device is capable of performing a measurement every 

5ms. During this time, the device collects and samples the 

signal on one channel, then collects the signal on the other 

channel, and is finally put to sleep until a new measurement 

cycle begins. This technique reduces the overall device’s 

power consumption. 

The firmware running on the device allows any computer 

platform to communicate with the device through a defined set 

of instructions. 4 basic instructions are provided as an API 

(Application Programming Interface) for end users to develop 

their own programs that can exchange with the Neonur device. 

For Windows programmers, an API in the form of a DLL is 

provided for both .NET and Win32 programmers. 

The USB interface allows end users to use the device without 

any COM port configurations or initial device setup on their 

part. 
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