

1

Abstract— Neonatal development is considered a complex

process to monitor because, due to the inability of neonates to

effectively communicate, the majority of the information about

neonatal physiology needs to be extracted by electronic means.

Studies have shown that information about an infant’s

behavioral and physiological states can be acquired by analyzing

parameters related to the sucking pressure and its frequency.

Multiple attempts have been made in the development of devices

capable of monitoring neonatal behaviors such as breathing and

feeding. However, the use of those devices is usually limited

because they are costly, bulky, and hard to use. This paper

proposes a design of a convenient, mobile, and energy efficient

monitoring system (Neonur) that could be easily assembled and

attached to a baby nutrient bottle. The monitoring system is

equipped with a pyroelectric breathing sensor constructed out of

polyvinylidene fluoride films and a standard disposable micro-

electro-mechanical pressure sensor widely used in medical

applications. The pyroelectric breathing sensor provides valuable

information about the infant’s respiratory state by generating

electric currents that are proportional to the magnitudes of the

small changes in temperature on the films produced by the

infant’s exhalation. Data gathered from the breathing and

sucking pressure sensors is saved on the on-chip memory and

later transferred to a computer via USB. The results indicate that

this device is well suited for monitoring neonatal breathing and

feeding characteristics, is easy to operate, and is cheap to

produce.

INTRODUCTION

Feeding, as carried on infants, is a sequentially coordinated

process that includes sucking, swallowing, and breathing. The

sequential flow of the feeding mechanism makes feeding one

of the most complex processes carried on infants

At-risk and, quite often, premature infants do not only have

problems with feeding but they also constitute a very

considerable percentage of the total number of neonates

annually. In 2009 only, almost 12% of all neonates born in the

U.S. fall in the category of at-risk or premature infants [1].

To optimize health conditions for at-risk and premature

infants, issues that can have long-term effects on health must

be recognized and taken care of at an early stage of neonatal

development. The complexities associated with the behavioral

or physiological studies of neonates result from the

incapability of neonates to effectively communicate with the

care givers. As a result, many of the attempted solutions to

neonatal development issues rely on technological means to

gather meaningful information on physiological states of

infants. Studies have shown that certain feeding characteristics

such as the sucking pressure and the frequency at which it

occurs encapsulates important information that can help

determine an infant’s behavioral and physiological states. By

analyzing successive sucking feeds or bursts in an infant’s

feeding session, it becomes possible to identify specific

feeding patterns that could generally be classified as normal or

abnormal tendencies.

In the U.S., a variety of technological solutions or devices

for monitoring feeding characteristics of neonates have been

developed from as early as 1963 [2]. Most of those devices

were suitable only for research laboratories, were quite

expensive, were not easy to assemble, and/or were

uncomfortable to use. Figure 1 illustrates a device developed

in 1963 by the Hospital of the University of Pennsylvania with

the collaboration of the Children’s Hospital of Philadelphia.

The device consists of a nutrient reservoir connected to a

capillary which regulates the nutrient flow to a nipple. A

pressure transducer measures the negative pressure due to the

flow of the nutrient that results from a sucking action.

Figure 1 : System to measure neonatal sucking by Kron, Stein, & Goddard

Figure 2 shows a device that has been used by the

Children’s Hospital of Philadelphia since the 1980’s. This

multi-part device consists of an expensive processing unit

wire-connected to a feeding apparatus. The device has a

complex assembly structure and is time-consuming to clean

after each feeding session. Also, the device has in total 13

different parts and still is uncomfortable to use because it

restricts motion when in use.

A Mobile System to Monitor Neonatal Nursing

Characteristics

 Gedeon K. Nyengele (Georgia Perimeter College, Electrical Engineering), SUNFEST Fellow

Professor Jay N. Zemel, Electrical and Systems Engineering.

2

Figure 2: System developed by Litt and Kron in the late 1980’s

Although technologically limited, this device is capable of

providing informative data related to feeding such as the

number of sucks in a burst (a fixed period of time constituted

of several feeds) and the number of bursts in a feeding session.

 It later became obvious that technological advances could

be reasonably used in the design of a more advanced

monitoring system and yet considerably easy to use. In 2008,

Professor Jay N. Zemel, in collaboration with Medoff Cooper,

Chen, and Rajendran, launched a design project geared toward

the development of a monitoring system, later named

NEONUR, with the end goal to have a simpler configuration,

to be portable, to be easily maintainable, to be easy to operate,

and to have an effective computer interface. Figure 3 below

shows the initial design of the Neonur.

Figure 3: Neonur

The Neonur system consists of an adapted regular baby

feeding bottle designed to house the feeding and breathing

monitoring sub-system referred to as the actual Neonur. The

overall monitoring system consists of three components: the

feeding nipple, the nutrient bottle, and the measurement

module. The feeding nipple and the nutrient bottle are

standard components widely used in hospital nurseries. The

measurement module consists of the sucking pressure sensor,

the analog and digital circuitry, a fluid control valve, and a

duckbill air inlet. The negative pressure applied to the feeding

nipple due to suction is measured by the pressure transducer.

The electric signal generated by the transducer is passed on to

the microcontroller for acquisition, digital conversion, and

storage. Although the current version of the Neonur device is

capable of monitoring neonatal feeding characteristics, the

device still has not successfully used a working and suitable

breathing sensor. In addition, careful manipulations are needed

to use the device as the system can be used only by someone

with a strong technical background.. This paper proposes

design solutions to commonly known communication issues in

the Neonur and also proposes a better interfacing of an

efficient breathing sensor constructed out of pyroelectric

polyvinylidene fluoride films.

I. BACKGROUND

A. Pyroelectricity

Pyro electricity is usually regarded as the ability of certain

materials to generate electric signals when exposed to

environmental temperature changes. Pyro electricity is

exhibited only in crystallized non-conducting substances

having at least one axis polar axis of symmetry [3]. A

common usage of pyro electricity is in the design of

pyroelectric thermometers, where temperature changes are

determined by measuring the voltage induced by the

separation of the charges in the pyro material. Another

common use of pyro electricity is in the design of pyroelectric

infrared sensors, the concept of which is very similar to that of

pyroelectric thermometers. In the last decade, researchers have

proposed the use of pyroelectric materials for battery charging.

This paper proposes the use of polyvinylidene fluorine films

(PVDF) for the design of the breathing sensor. The studies of

electric properties of polyvinylidene films started a large focus

on its piezoelectric properties. Figure 4 shows the PVDF used

in the design of the breathing sensor next to a penny (U.S. 1-

cent coin).

Figure 4 : Polyvinylidene film next to a penny

When poled - placed under a strong magnetic field to induce a

net dipole moment - the piezoelectric coefficient of

polyvinylidene films reaches 7 pC/N, which is approximately

10 times larger than that observed in any other polymer [4].

Also, polyvinylidene films show very efficient pyroelectric

properties when poled, making them suitable for sensor

designs.

3

B. Piezoresistivity

The piezoresistive effect is the change in the electrical

resistivity of a material due to an applied mechanical stress. It

is important to note that Piezoresistivity is a linear coupling

between mechanical stress or strain and electrical resistivity.

This property is commonly seen in semiconductors (Si and

Ge), heterogeneous solids, superconductors, thin-metal films,

Schottky barrier diodes, and Metal-Insulator-Metal (MIM)

structures.

 When mechanical strain is applied on a semiconductor such

as silicon, a change in the energy band is created thus resulting

in a change of the material’s conductivity. Silicon and other

semiconductors are frequently used for pressure measurement

because of their sensitivity to mechanical strain. Generally,

semiconductor sensors are encapsulated together with

accompanying electrical circuits into small devices called

Micro-Electro-Mechanical Systems. Figure 5 shows the

Freescale MPX2300DT1 pressure sensor module used in the

design of the Neonur.

Figure 5 : Freescale MPX2300DT1 pressure sensor

C. Microcontrollers and the PIC18F14K50

Microcontrollers are essentially single-chip computers

containing a processor core, memory, and I/O. A

microcontroller usually incorporates other specialized

components that are useful in embedded systems. For the most

part, those components are serial ports (RS-232, USB, SPI,

CAN, I2C, etc.), on-board memory (Flash, DRAM, SRAM,

EEPROM, etc.), and analog I/O (ADC and DAC). The

difference between a microcontroller and a microprocessor is

that a microcontroller houses the processing unit and the

peripheral units on a single chip whereas a microprocessor

does not. The usage of microcontrollers can vary from one

project to another. In general, microcontrollers are used in

personal information products (cell phones, pagers, watches,

calculators, etc.), in laptop components (modem, sound card,

mouse, keyboard, etc.), in home appliances (alarm clock, air

conditioner, remote controls, refrigerators, microwaves, etc.),

in smart cards, in implantable medical devices, in toys, in

automobile control systems, and in most devices with

keypads. Microcontrollers are generally grouped into families

based on the number of bits that are used as a unit – a word -

by the processor. Modern processors usually have word sizes

of 8, 16, 24, 32, and 64 bits. Although microcontrollers

usually ship with a variety of built-in peripherals, all

microcontrollers do not usually have the same peripherals

built-in them. However, almost every microcontroller in the

market has an internal memory, a clock, a CPU, Input/Output

(I/O) capabilities, timers, interrupt controllers, and Analog-to-

Digital Converters (ADC).

 C.1. Clock

 The microcontroller clock is the component that

synchronizes the rate of execution of the program instructions.

The pulses generated by the clock enable harmonic and

synchronous operation of all the microcontroller’s

components. Some program instructions take exactly one

clock cycle to execute while others require a couple clock

cycles to execute.

Most clock sources for built-in microcontroller clock modules

are based on the RC oscillator design. However, for time-

critical operations, most designers use external clock sources

such as standalone crystal oscillators, ceramic resonators, or a

combination of crystals and microcontroller’s built-in

oscillator circuitry.

C.2. CPU

 The CPU is commonly regarded as the “brain” of the

microcontroller. It is the unit that executes the arithmetic,

logic, and control instructions. Before executing any

instruction, the CPU first fetches the instruction and the data

to use in the operation on the data bus.

 CPUs usually have a maximum clock rate at which they can

reliably operate. As an example, the PIC18F14K50

microcontroller used in the design of the Neonur has a

maximum clock speed of 12 MIPS (Million Instructions Per

Second). Figure 6 shows the PIC18F14K50 used in the

Neonur.

Figure 6: PIC18F14K50 from Microchip, picture by author

C.3. Input / Output (I/O)

 A significant difference between a microcontroller and a

microprocessor is that a microcontroller has built-in hardware

to deal with the external world. The microcontroller

communicates with the world outside of it by its I/O lines.

Most microcontrollers have more than a single I/O line and

those I/O lines can be configured as input lines, for reading

states from the outside world, or output lines.

C.4. Timers

 Timers are internal clocks in the microcontroller. They

provide a sense of time and duration during program

execution. Usually, timer functionalities are provided at a

4

clock rate that is a fraction of the system or main clock. In

most microcontroller designs, timers are used as 8-bit timers

or 16-bit timers. 8-bit timers can count from 0 to 255 whereas

16-bit timers can count from 0 to 65535. Using a reliable

clock source, a good delay mechanism can be designed using

timers. Most of the delay mechanisms implemented in the

Neonur design use timers.

C.5 Interrupt Controllers

 Interrupts are a mechanism which enables the

microcontroller to respond to specific events, regardless of

what the microcontroller is executing at that time. When an

interrupt occurs, the microcontroller stops executing the

current program flow and branches out to the interrupt

handling routine. After the interrupt is handled, the

microcontroller resumes program execution from the point

where the interrupt occurred. Many of the microcontroller’s

functionalities are accomplished with the use of interrupts.

C.6. Analog-to-Digital Converters

 In general, the signals generated by different objects in

nature are analog. Microcontrollers, instead, are capable of

detecting or reading binary signals. Binary signals provide

information only about two defined states: ON or OFF (1 or

0). For TLL-based microcontrollers powered from 5 volts, an

ON state could be any voltage below 2.5 volts whereas an

OFF state could be any voltage above 2.5 volts. Luckily,

microcontrollers have a built-in device into them that allows

conversions of analog signals to a range of values that can be

used in the microcontroller program. An Analog-to-Digital

Converter (ADC) is very useful tool that maps analog voltages

to numbers that can be used in electronics to interface to the

world around us. With an ADC module, one can add sensors

to their design and control the behavior of a system based

physical quantities such as temperature, strain, light, sound,

distance, etc. One of the most important characteristic of an

ADC is its resolution. Resolution is a measure of how

sensitive an ADC is to changes in the input signal. A 10-bit

ADC module is more sensitive than an 8-bit ADC module. An

8-bit ADC module is capable of detecting 256 discrete analog

levels whereas a 10-bit ADC module is able to detect 1024

discrete analog levels. Assuming that the microcontroller is

powered from a 5-volt source, an 8-bit ADC module would be

sensitive to voltage changes of the order of 0.02 volts or 20

mV (5 volts/256). This suggests that the ADC module does

not differentiate a 0 mV signal from a 19 mV signal. However,

a 10-bit ADC module would sense voltage changes of as much

as 0.005 volts or 5 mV. But still, the ADC module would not

differentiate a 0 mV signal from a 4 mV signal.

In order for programs to be stored on the microcontroller and

for the microcontroller to execute its tasks properly, most

microcontrollers are equipped with internal memory as either

Flash, EEPROM, PROM, EPROM, ROM, and RAM

memories. The microcontroller memory is usually divided into

two separate memory blocks: data memory and program

memory. The program memory is the location where the

firmware (the program that runs the microcontroller) is stored.

All temporary storage locations including calculation results

and variables are located in the data memory.

 For a successful use of the microcontroller, special memory

locations are reserved for the microcontroller operations.

These are called Special Function Registers (SFRs). SFRs are

extensively used with peripherals built-in the microcontroller.

For example, the ADCON0 register of the PIC18F14K50

microcontroller stores information about when an Analog-to-

Digital conversion is completed. The ADRESH and ADRESL

registers store the actual ADC conversion result.

D. Serial Peripheral Interface (SPI)

The SPI is a synchronous serial interface in which data, in

8-bit streams, is shifted in or out one bit at a time. In electronic

designs based on microcontrollers, SPI can be used to

communicate with a serial peripheral device or another

microcontroller with an SPI interface. The SPI runs in a full-

duplex mode meaning that the device implementing the SPI

protocol can both receive and transmit data. An SPI device

usually has 4 wire connections: Clock line, Serial Data Output

line, Serial Data Input line, and the Chip Select line. The

Serial Data Output line is used by the device to send packets

of data out to another SPI device one bit at a time. The Serial

Data Input line receives data packets sent from another SPI

device one bit at a time. Usually, devices communicate in

Master/Slave mode where the master device initiates

communications. In that case, the master device is responsible

for providing a Clock source to the slave device. The master

device initiates communications by selecting an SPI device to

communicate with. This is done my manipulating the Chip

Select pin line. When driven low, the Chip Select pin state

allows the slave device to respond to the master device’s

requests or commands. In master/slave mode, multiple devices

can be configured as slaves working with a single master

device. In that case, all the slave devices can share the Serial

Data Output line, the Serial Data Input line, and the Clock

line. The master device needs to provide separate Chip Select

lines for each individual slave device. The M25P16 external

flash memory used in the design of the Neonur implements the

SPI protocol. Figure 7 below shows the M25P16 memory chip

used in the Neonur.

Figure 7: M25P16 from Numonyx, picture by author

Care must be given to the design of system that

implements the SPI protocol because communications

between devices are initiated by changes in the states of

devices’ pins. Most of the issues with the SPI protocol arise

when a pin is not defaulted to a known state. For example, if

5

the Chip Select pin is not pulled high initially, communication

between devices would be compromised as the slave device

might be selected while the master device did not intend to

initiate a communication.

E. Universal Serial Bus (USB)

The Universal Serial Bus is a set of connectivity industry

standards that define communication protocols used in

communications between computers and electronic devices.

The standards also define the connectors, the cables, and the

electrical requirements that USB designers have to comply

with for better device functionality. The USB specifications

support four different bus speeds at which devices can operate.

At Low Speed, introduced in USB 1.0, devices can

communicate and transfer data at the maximum rate of 1.5

Mbps. At Full Speed, also introduced in USB 1.0, data

transfers can occur at a maximum speed of 12 Mbps. The

High Speed and SuperSpeed rates allow devices to

communicate and transfer data at maximum rates of

respectively 480 Mbps and 5 Gbps. The different speeds

allow developers to select a speed range that is appropriate to

the functionalities of a specific device. Also, devices running

at a higher speeds can usually work on platforms supporting

only lower speeds. Backward compatibility is strictly enforced

by the USB specifications.

E.1 Advantages of USB

USB exhibits advantages and benefits for both device end

users and developers. For end users, USB offers an easy-to-

use interface. For the most part, users do not intervene in the

computer setup of a USB device. When a user connects a USB

device to a computer, the operating system on the computer

recognizes the attachment of the device and automatically

loads the appropriate driver for the device. Another major

benefit of USB is its protection against data corruption. The

USB protocols enable identifying data errors and notifying the

sender to retransmit. Additionally, USB devices are usually

built with power saving considerations. Reduced power

consumption increases battery life for battery-powered

devices, thus helping user to save money.

On the developer side, USB offers four different speeds and

transfer types that can accommodate a variety of peripherals.

Arguably the most important advantage of USB for developers

is the support provided by operating systems. The different

tasks performed by operating systems include detecting when

devices are attached and removed from a computer,

exchanging with newly connected devices to find out how data

should be transferred, providing a link that enables software

drivers manage communications between the USB device and

computer programs that want to communicate with the device.

E.2 Disadvantages of USB

Although equipped with a variety of useful capabilities, USB,

like any other interface, has several limitations. Perhaps the

most fundamental one is its restriction on the distance between

the device and a host. USB was designed as an expansion bus

where devices are close to the computer or host. To allow

longer distances, self-powered bridge devices are often used.

Another limitation to the USB interface is the inability to

broadcast. USB does not support sending data simultaneously

to multiple devices. Usually, the host must send data packets

to each device individually. Additionally, USB restricts all

communications between a host and a device. The host might

be a personal computer or any other device with host-

controller capabilities. This suggests that Peer-to-Peer

communications are not supported under USB. Hosts cannot

talk to each other directly and devices cannot talk to each

other directly.

The USB 3.0 specification however provides solutions to

some of the USB limitations. For instance, The USB 3.0

allows developers to design systems using timestamp packets

for the host to simultaneously communicate with multiple

devices. The USB On-The-Go (OTG) option offers a partial

solution to the Peer-to-Peer communication limitation. With

USB On-The-Go, a device can function both as an end device

and a host. This allows devices to communicate directly with

other devices.

Arguably the most intrinsic challenge with USB is the

protocol complexity. Extensive firmware is needed on the

device to properly exchange on the bus. Also, although major

operating systems do provide support and generic drivers for

application development and communication with USB

devices, vendor-specific drivers are usually required for

augmented device capabilities not supported by the USB

generic drivers offered by the operating system.

In addition to all the complexities and limitations, USB

requires the use of a Vendor ID and a Product ID for a device

to properly exchange with a host. Unfortunately Vendor IDs

are not granted for free. The USB Implementers Forum (USB-

IF), the people in charge of the USB specifications, charge a

fee of about $2000 for a Vendor ID. The owner of a Vendor

ID further assigns Product IDs to different devices. Chip

manufacturers such as Microchip and Future Technology

Devices International Limited (FTDI) will assign a range of

Product IDs to a customer for use with the company Vendor

ID in their devices at no charge. However, there is usually a

limitation in the number of customer devices that can use the

company’s Vendor ID.

E.3 Common Uses of USB

 Today, USB can be used for any device that has computer

interfacing design. However, many of the USB devices on the

market usually implement at least one of the defined USB

classes because most USB devices have much in common

with other devices that perform similar functions. The

standard USB defined classes are Audio class,

Communication class (CDC), Content Security class, Device

Firmware Upgrade class (DFU), Human Interface Device

class (HID), IrDA Bridge class, Mass Storage class, Personal

Healthcare class, Printer class, Smart Card class, Still Image

Capture class, Test and Measurement class, and the Video

class. Many devices are built on top of these classes including

keyboards, pointing devices, digital cameras, printers, portable

6

media players, disk drives, network adapters, video game

controllers, medical devices, and more.

A class specification usually serves as a guide for firmware

developers, application programmers, and driver developers.

E.4 Getting a USB device to properly run

Although a couple electronic components are needed for the

design of a USB device, implementation of the USB protocol

heavily relies on the firmware running on the device. Once

connected to a host, the device firmware needs to be capable

of identifying the device to the host (enumeration process).

After device successful device enumeration, the device

firmware needs to be able to handle data exchanges between

the device and host. The exchanges include accusing reception

of data packets, signaling errors in data transfers, properly

responding to host requests, and managing power

requirements set by the host.

E.4.1 Device Enumeration

Once the device is connected to the host, a couple

transactions occur before the device can properly

communicate with applications and drivers running on the

host computer. Those transactions are meant to help the host

learn about the device. The host needs to determine whether a

device is a keyboard, a mouse, a speaker, a digital camera, a

mass storage device, a printer, a network adapter, or any other

defined type. After the host has learned about the device, the

host assigns a proper driver to the device for further

communications. Device enumeration is the process that

accomplishes all the tasks mentioned above. The overall

enumeration process consists of reading descriptors from the

device, assigning an address to the device, assigning a driver

to the device, and setting proper power requirements for the

device. During enumeration, the device goes through a series

of device states that shows progress in the process. Those

states are the Powered state, the Default state, the Address

state, the Attached state, the Suspend state, and the Configured

state. During enumeration, the device must detect and respond

to any enumeration request at any time. Also, the device

should not assume any particular order in which enumeration

occurs. However, in a typical enumeration, the process starts

with the detection of the device attachment by the hub. The

hub actually monitors the signal levels on D+ and D- lines.

Initially, the D+ and D- lines are pulled down in the hub. A

full-speed device would therefore pull up the D+ line,

permitting the hub to identify the device as a full-speed

device. Similarly, a low-speed device would pull up the D-

line to notify the hub of the attachment of the low-speed

device. After the hub has determined the nature of the attached

device, the hub notifies the host of the attachment of the

device and establishes a communication path between the

device and the bus after resetting the device. Usually after this

step, the host requests the device to provide different

descriptors allowing the host to learn about the functionalities

of the device, the number of interfaces the device implements,

the meaning of the data sent by the device, the device power

requirements, the device’s name and type, and the device’s

manufacturer. Vendor IDs and Product IDs are used by the

device to inform the host about the device’s manufacturer.

After successfully learning about the attached device, the host

usually assigns and loads an appropriate driver for the device.

The majority of these tasks, if not all, are carried by the device

firmware. Therefore, writing device firmware for USB

communication is considered a difficult task by most

developers.

E.4.2 Device descriptors and endpoints

Device descriptors, as the name implies, are device description

structures that are sent to the host during the enumeration

process. They contain the information that allows the host to

learn about the device as a whole or about specific device

capabilities. The most important descriptors are the device

descriptor, the configuration descriptor, the interface

descriptor, and the endpoint descriptor. Standard descriptors

contain a bLength field (one byte) that provides the size of the

descriptor in bytes. In addition to the bLength field, standard

descriptors also contain a bDescriptorType field that identifies

the descriptor’s type.

As for most serial interfaces, data transfers are conducted

between devices’ buffers. Usually, on one end of the

communication bus, a device would put the data to transmit in

a buffer. Data would then be sent on the serial bus bit after bit.

On the other end of the bus, the receiving device would store

the received bits in a buffer up until a byte or any other data

size is received. Data buffers on the USB device side of the

communication are called endpoints. Each endpoint on the

USB device has an address consisting of an address number

and direction. The USB specifications require at least one

endpoint for successful communications with the host. This

endpoint must have the address number 0. Endpoint numbers

range from 0 to 15. Endpoint directions are either IN for

storing data to be sent to the host or OUT for storing data

received from the host.

E.4.3 USB transfer types

USB supports 4 different data transfer types which are control

transfers, bulk transfers, interrupt transfers, and isochronous

transfers. Control transfers are usually used by the host for

enumeration and configurations. The host uses this transfer

type to send requests to the device. In this type of transfer,

data exchanges occur in both directions. Although control

transfers are usually used for enumeration of devices, it can

also support transfers of small amounts of data. In interrupt

transfers, the host frequently polls the device to determine if

the device is ready to send data to the host. Bulk and

Isochronous transfer types are in a sense opposite types of

transfers. In a bulk transfer, the data transfer rate is not

guaranteed but data accuracy is preserved. In an isochronous

transfer type, data transfer rate is guaranteed while data loss is

permitted. A good example of devices that use bulk transfers

is an audio speaker.

7

E.5 Human Interface Devices (HID)

The Human Interface Devices (HID) is one the most used

USB class for devices because the HID class supports a

variety of devices such as keyboards, mice, and game

controllers and also because the class allows development of

devices that perform vendor-specific or custom functions. In

Windows operating system, the HID class was one the first

classes implemented [citation – Jan Axelson]. To use the HID

class, a device does not have to have a human interface.

However, the device has to implement the requirements of the

HID class. In a typical HID class implementation, data

transfers occur with the exchange of reports. Reports are

fixed-length data structures. Also, a HID device can have only

one interrupt IN endpoint for storing data to be sent to the

host.

For more information on the HID class and USB in general,

readers are encouraged to take a look at Jan Axelson’s USB

Complete book. This best-selling developer’s guide to the

Universal Serial Bus covers all aspects of the USB interface

including hardware design, firmware programming, and host

application software development.

II. IMPLEMENTATION

II.1 Hardware

The Neonur device consists of three main components, which

are the feeding nipple, the nutrient bottle, and the core

measurement module. The feeding nipple and the nutrient

bottle are parts of the regular baby bottles found in most

nurseries. Figure 8 below shows the different main parts of the

Neonur device.

Figure 8: Neonur device main parts, picture by author

The core measurement module houses all the electronic

components of the device. The main electronic components

are the external flash memory chip, the voltage regulator, the

sensors and instrumentation amplifier, the microcontroller,

and the USB port.

II.1.1 External flash memory

The Neonur uses a 16-mega-bit external flash memory for data

storage. The chip used is the regular M25P16 16 Mb serial

flash memory unit from Numonyx.

The Neonur is capable of carrying measurements every 5

milliseconds. Each of the measurements consists of a pressure

sensor reading and a breathing sensor reading. Each of the

readings is stored as an 8-bit value. With these specifications,

the memory chip is capable of storing 1,048,576

measurements or 87-minute-long feeding cycle.

Figure 9 below shows the M25P16 memory chip used in the

Neonur and its pin configurations.

Figure 9: M25P16 schematic, picture from Numonyx

Pin 1, referred to as Chip Select pin, is pulled up to avoid the

chip being selected at random. Pins 3 and 7, respectively

referred to as WRITE_PROTECT and HOLD pins, are pulled

up as well because neither the WRITE_PROTECT or HOLD

functionalities are implemented by the Neonur firmware. The

reason for this is that the memory chip has a built-in WRITE

protection mechanism that requires specific wave forms to

perform any write operation. Pins 4 and 8 connect to Ground

and the positive voltage Vcc respectively. Pins 2 and 5

connect to the microcontroller’s pins 13 and 9, which are the

Serial Data Input and Serial Data Output pins respectively.

The memory chip’s pin 6, referred to as the Serial Clock

source, is connected to the microcontroller’s pin 11 (SCK).

This pin receives the clock signal from the microcontroller to

allow the memory chip to synchronize and exchange with the

microcontroller. The Serial Clock pin on the memory chip is

pulled down to avoid random fluctuations in the signal.

This mode of operation between the microcontroller and the

memory flash is also referred to as Master/Slave mode, where

the microcontroller performs as the master and the memory

chip performs as the slave. The microcontroller takes the

Master responsibilities because it provides the clock signal to

the memory chip and it also initiates all the exchanges with the

memory chip.

All pull-up and pull-down resistors used with the memory chip

are valued 100 Kilo Ohms resistors. However, any value as

low as 4.7 Kilo Ohms could still be used. The reason for the

use of the 100K resistors is to limit the amount of current

wasted by pull-down mechanisms to a very minimum.

II.1.2 Voltage Regulator

The Neonur device is powered by a 3-volt battery (CR-1/3N)

during data acquisition. Once connected to the USB bus for

data transfer, the power source is switched to USB. In this

mode, the Neonur is powered from the USB bus. Two design

concerns arise from this mechanism. First, careful attention

needs to be given to the coupling of the two power sources as

the USB specifications require that no current must be flow

back to a host computer. To solve this problem, a switching

mechanism is implemented. A switch is placed between the

two power sources so that only one source can power the

device at any given time. The second concern is that the USB

bus provides a 5-volt signal whereas components such as the

external flash memory can support only up to 3.6 volts. To

resolve this concern, a voltage regulator is placed at the output

8

of the switch explained above. The voltage regulator ensures

that the signal fed to the circuit will not exceed 3.3 volts,

which is a voltage that all components on the board can safely

work with.

II.1.3 Sensors and Instrumentation Amplifier

1. Sucking pressure sensor

A pressure sensor module (Freescale MPX2300DT1) is used

to record infant’s sucking activity. The Freescale sensor is a

standard disposable micro-electro-mechanical module used in

a variety of medical applications.

The sensor pins were bent at 90 degrees to allow the sensor

module to be easily interfaced with the circuit board. The

sensor module is further glued with silicon glue to a frame that

allows the sensor to be easily pluggable to the Neonur core

frame.

2. Breathing Sensor

The pyroelectric breathing sensor is constructed out of

pyroelectric films. In the design of the Neonur, a

polyvinylidene film was used. The film is first mounted on a

frame that is further attached to the nipple of the nutrient

bottle. Figure 10 below shows the design of the breathing

sensor.

Figure 10: Breathing sensor design, picture by author

3. Instrumentation Amplifier

Signal conditioning for both the breathing sensor and the

sucking pressure sensor was of high importance in the design

of the Neonur.

The Freescale pressure sensor outputs signal voltages in the

range of 0 – 450mV. The voltages in this range are not well-

suited for use with the microcontroller’s analog-to-digital

converter which has a broader range of 0 – 3 volts when

powered from a 3.3v battery. The INA 2126 instrumentation

amplifier is used to amplify the signal from the sensor to the

microcontroller. However, the signal from the sucking

pressure sensor is inverted so that measurements on large

negative pressures could be recorded.

As for the pyroelectric breathing sensor, the fluctuations in

signal strength can be very large. Hundreds of volts can be

easily obtained from the pyro films. However, the

microcontroller ADC module does not tolerate voltages of

more than 3 volts. To solve this problem, a couple techniques

were used. First, the signal from the pyro sensor is rectified

with the use of a Schottky-based bridge rectifier. This process

makes the whole signal positive. Once the signal is rectified, a

Zener diode is used to limit the output voltage of the pyro

sensor to a suitable maximum voltage to be fed to the

instrumentation amplifier. A resistor-capacitor pair is also

used to filter the signal so that unwanted ripples can be

eliminated.

Figure 11 below shows the overall design of the Neonur as

accomplished in Eagle CAD software.

Figure 11: Neonur CAD design, picture by author

II.2 Software

For proper functioning of the Neonur, a firmware was written

to assist the device with its tasks. In general, the firmware

written for the microcontroller PIC18F14K50 has three major

roles to play: Acquire data through the ADC module, allow

data transfers between the microcontroller and the external

flash memory, and finally communicate with the computer

application for data upload through USB. All the code

snippets provided in this article assume the following: use of

PIC18F14K50 as the microcontroller and use of C18 as the

compiler.

1. Data Acquisition

The Neonur device has a capability to perform a measurement

every 5ms. To accomplish this task, it was necessary to create

a software routine that would help in keeping track of this time

interval. Figure 12 below shows a routine written in C

programming language to help determine when the 5ms are

reached.

9

Figure 12: timing routines in C, picture by author

The routine consists of two functions. The first function

timer_us_set() initializes a point in time when to start

measuring time. The second function timer_us_wait() allows

the device to wait for the 5ms to be consumed before

performing the next measurement.

--CODE

The code snippet provided above assumes that the device is

running at 48 MHz.

Along with timed measurements, the ADC module needs to be

properly configured before any use.

To use the ADC module, the sensor pins need proper

configurations. In the case of the Neonur device, the breathing

and pressure sensors are respectively pins 7 and 8 on the PIC

microcontroller. Two things need to be done to properly

configure these two pins. First, they need to be configured as

analog pins by setting their respective ANSEL bits. Second,

these two pins have to be set as input pins by setting their

TRIS bits. Figure 13 shows the configuration of pins 7 and 8

as analog input pins.

Figure 13: Code snippet: configuring pins, picture by author

After appropriate configuration of the sensor pins, it is

necessary to configure the ADC module. The PIC

microcontroller provides 3 registers that control the operations

of the ADC module. Those registers are ADCON0, ADCON1

and ADCON2. All the registers on the PIC18F14K50 are 8-bit

registers. The ADCON0 register only implements 6 bits

starting from bit 0, the rightmost bit, to bit 5 (sixth bit in the

register). The first bit in ADCON0 register is the ADON bit

which enables the ADC module. Usually this bit is the last bit

set before starting data acquisition. The second bit, the

GO/DONE bit, has two uses. It is used to determine the status

of a conversion and also, when set, it tells the ADC module to

start the A/D conversion cycle. Bits 2 to 5 are used to select

the analog channel to use with the ADC. In the case of the

Neonur, channel 7 (AN7) and channel 8 (AN8) are

dynamically selected. ADCON1 and ADCON2 registers

control configurations of the voltage references, A/D data

format, clock source, and acquisition time. More on the ADC

registers can be found in the PIC18F14K50 data sheet. Figure

14 below shows a code snippet of the configurations for

registers ADCON1 and ADCON2 made for the Neonur.

Figure 14: Setting up the ADC module, picture by author

Once the ADC module is properly configured, it can be used

to convert analog voltages generated by the pressure and

breathing sensors to digital values that are stored in the

memory chip. Figure 15 below shows a sample code snippet

that illustrates how the ADC module is used with the external

flash memory in a data acquisition process.

Figure 15: ADC and timing routines, picture by author

2. Data Storage

After data has been successfully converted by the ADC

module, it is stored in the on-board memory chip. To write to

the memory chip, three things have to be done in this order:

first the memory chip is selected, then the chip is made

writable by sending the Write-Enable command, and finally

data to store is transferred out. The line dedicated for selecting

the memory chip is the pin 6 on the microcontroller. To select

the memory chip for exchanges, pin 6 on the PIC

microcontroller is pulled low. After pulling the pin low, the

write enable command (0x06) is send to the device. Right after

sending the write enable command to the memory chip, the

chip select line has to be pulled high immediately. This feature

is a security feature implemented in the M25P16 and many

other serial flash memory units. To start the data transfer

process, the memory chip needs to be selected again by

pulling the select chip line low, then sending the write

command (0x02) followed by the 24-bit address location

where data should be written. Following the address is the data

byte to write. The select line is pulled high again at the end of

the transaction.

Once data transfer complete, the memory chip starts the write

process. During this time the chip cannot be accessed for any

10

write, erase, or read operations. However, the status register

can be read to determine the status of the write process.

3. Data Transfer

Usually, after data acquisition, the Neonur module is plugged

to a computer for data upload. In previous designs of the

Neonur device, data transfers occurred on USART. This work

changed the communication interface to use the USB bus.

When the Neonur is attached to a PC computer, the PC

application recognizes the device and allows the user to

communicate with the device by sending instructions. Before

USB can work on the device, there are a couple things the

device firmware needs to accomplish. First of all, the device

firmware needs to successfully go through the enumeration

process with the computer. The firmware written for the

Neonur is built upon the core USB stack provided by

Microchip. As one would soon realize, writing a USB stack

from scratch is a very complex and time-consuming task.

Most microcontroller manufacturers provide core USB stacks

to help developers build firmware faster. There is no change

made to the USB core stack. The microchip USB core is

usually used with the Microchip Application Libraries as is the

case with the Neonur. Details on implementing the USB

protocol are provided in the appendix.

Once the PC application requests data from the device, the

microcontroller reads the memory chip and transmits the read

data in 64-byte packets.

III. RESULTS

The Neonur firmware is now capable of communicating with

the PC application without any issues. The PC application is

programmed so that it helps the users by guiding them step by

step through the data transfer routine. With the

implementation of the USB interface, the device can be used

with any computer platform supporting USB. Also, no actions

are required from the user regarding device setup on the host

computer. Using USB, data transfer speed can go up to 480

Mbps. The device firmware implements the USB HID class as

specified by the USB specifications, thus allowing the device

to function properly without any device firmware changes on

major operating systems such as Linux, Mac OS, and

Windows.

The device has a minimum power consumption of about 75

mW at idle state and 111 mW at full operation. During USB

transfers, power is provided by the host computer, thus saving

battery energy. It is also noticed that putting the device to

sleep between consecutive measurements improves the overall

device power consumption.

The pyroelectric breathing sensor made out polyvinylidene

fluoride films generates its own current, thus extending the

battery life.

IV. CONCLUSION

The final Neonur product has not been manufactured yet, but a

prototyping board in sunder construction. It will be necessary

to test the device in a number of different conditions and

ensure that the pyroelectric breathing sensor works as

expected.

The data uploaded from the device is parsed and saved in a

text file in a way that is easy for the end user to copy and paste

in plot-generating software packages.

The device is capable of performing a measurement every

5ms. During this time, the device collects and samples the

signal on one channel, then collects the signal on the other

channel, and is finally put to sleep until a new measurement

cycle begins. This technique reduces the overall device’s

power consumption.

The firmware running on the device allows any computer

platform to communicate with the device through a defined set

of instructions. 4 basic instructions are provided as an API

(Application Programming Interface) for end users to develop

their own programs that can exchange with the Neonur device.

For Windows programmers, an API in the form of a DLL is

provided for both .NET and Win32 programmers.

The USB interface allows end users to use the device without

any COM port configurations or initial device setup on their

part.

V. ACKNOWLEDGEMENTS

The author of this work, Gedeon Nyengele, would like to

thank the following people and organizations for their help

and valuable contributions to the success of this work. I

acknowledge Dr. Jay Zemel for being a very supportive

advisor and for explaining the concepts essential to the success

of this work. I also thank all individuals that have worked on

the Neonur before for laying down the framework of what

today is a better device. I acknowledge Dr. Jan Van der

Spiegel and the SUNFEST program for creating this

wonderful opportunity and remarkable REU program. I

sincerely thank Linda Kalb and Josh Taton for their reminders,

follow-ups, and social guidance that made the University of

Pennsylvania and the city of Philadelphia a home during this

research. I finally thank the National Science Foundation

(NSF) for giving undergraduates an opportunity to conduct

research.

REFERENCES

[1] http://www.cdc.gov/nchs/data/nvsr/nvsr60/nvsr60_01.pdf

[2] Kron R.E., Stein, M., Goddard, K., (1963), A Method of

Measuring Sucking Behaviourof Newborn." Psychosomatic

Medicine, Vol. 29, pp. 181-191.

[3] "pyroelectricity." Encyclopædia Britannica. Encyclopædia

Britannica Online Academic Edition. Encyclopædia

Britannica Inc., 2013. Web. 01 Aug. 2013.

[4] Kawai, Heiji (1969). "The Piezoelectricity of Poly

(vinylidene Fluoride)". Japanese Journal of Applied Physics 8

(7): 975. doi:10.1143/JJAP.8.975.

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1143%2FJJAP.8.975

