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Abstract— Between 1990 and 2000, over 600,000 implantable 
cardiac pacemakers and cardioverter defibrillators were 
recalled. 41% of these devices were recalled due to device 
software issues. Software-related recalls are increasing with the 
growing complexity of medical device software, which is 
responsible for the life-critical operation with the organ. 
Currently, there are no formal methods to test and verify the 
safety of implantable cardiac device software. To meet this need, 
a pacemaker-testing platform has been developed to 
automatically verify that the software in a pacemaker is 
functioning appropriately and determine if the pacemaker 
implementation conforms to the device software design 
specifications. A testing methodology was developed where tests 
were automatically generated from a model of the pacemaker 
that satisfied the specifications. These tests checked the software 
implemented in the physical pacemaker were in conformance 
with the design specifications and ensured safe operation. This 
paper outlines the steps used to create this testing platform, as 
well as the steps used to construct a pacemaker model for testing. 
By using this test framework as a standard for medical device 
testing, the US Food and Drug Administration (FDA) will 
potentially have a more streamlined method to certify the safety 
of medical device software. 
 
Index Items: Pacemakers, software validation, model-based 
development, safety analysis 

I. INTRODUCTION 
Over the past few decades, implantable cardiac devices such 
as pacemakers have been widely used to treat arrhythmia, 
which are heart diseases featuring irregular heart rhythms. 
However, the number of life-threatening device malfunctions 
increases as the complexity of the device software increases. 
Between 1990 and 2000, over 600,000 implantable cardiac 
devices were recalled, and the percentage of medical device 
recalls due to software-related issues increased from 10% to 
21% [1]. 

Currently there is no systematic way to evaluate the safety of 
pacemaker software. The Food and Drug Administration 
(FDA) certifies devices like pacemakers based on the 
extensive test reports submitted by device manufacturers [2]. 
The primary approach for system-level testing of pacemakers 
is unit testing, which requires playing a pre-recorded 

 
 

electrogram signal into the pacemaker and recording the 
output of the pacemaker. This helps to evaluate if the input 
signal triggered the appropriate response by the pacemaker, 
but has no means of evaluating if the response was appropriate 
for the patient condition [3]. Moreover, this open-loop testing 
method by the device manufacturers is not able to find 
potential safety violations that involve closed-loop interaction 
between the device and its environment (i.e. the heart or the 
patient). 

The test cases used to evaluate pacemakers are also not 
systematically generated to guarantee coverage over all 
possible scenarios in the software specification. As a result, 
open-loop testing cannot guarantee the safety of the 
pacemaker software. Furthermore, with the patient in the loop, 
it is necessary to devise a new testing methodology, as all 
possible cases cannot be enumerated. 

Previous efforts on the verification of time-critical and safety-
critical embedded systems have been done [4]; however, these 
methods have only started to be implemented for medical 
device evaluation and verification. D. Arney, R. Jetley, P. 
Jones, I. Lee, and O. Sokolsky [5] have used Extended Finite 
State Machines for model checking of a resuscitation device. 
Additionally, formalized methods to improve medical device 
protocols [6] and safety [7] have been created. However, the 
authors either used a simplified patient model or did not use a 
patient model in their methods. 

The focus of this paper is on the development of tools and 
methodologies to test and formally verify whether the 
software in pacemakers is safe within the closed-loop context 
of the patient. Section II provides a brief overview of heart 
electrophysiology, the operation of pacemakers, and timed 
automata modeling. Section III provides the Methodology for 
developing the tools. Section IV details UPPAAL timed 
automata modeling efforts. Section V describes how the  
UPPAAL Timed Automata Model was translated into a 
MATLAB Implementation. Section VI describes how the 
MATLAB Implementation was translated into a hardware 
implementation. Section VII concludes the work. Section VIII 
presents applications of the project. Section IX describes 
future work. 
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II. BACKGROUND 

A. Heart Anatomy and Electrophysiology 
To maintain and regulate proper function, the heart generates 
electrical impulses which help to organize muscle contractions 
involved in pumping blood to the rest of the body. The heart 
consists of four chambers, the left and right atriums, which 
obtain blood from the body; and the left and right ventricles, 
which obtain blood from the left and right atriums respectively 
and pump blood to the body (Fig 1.). A tissue located on the 
right atrium, called the Sinoatrial (SA) node periodically self-
depolarizes. This depolarization signal then travels to both 
atria, causing contractions which pushes blood into the 
ventricles. The signal is then delayed at the Atrioventricular 
(AV) node, which allows the ventricles to fill fully before 
being stimulated. The His-Purkinje system then spreads the 
signal to both ventricles, which causes contractions in the 
ventricles to push blood to the rest of the body. Any 
impairment or anomalies of this electrical system can cause 
heart arrhythmias, which affect the heart’s ability to properly 
pump blood to the rest of the body [8]. 

 
Fig 1. Heart Anatomy and Electrical Conduction System 

B. Pacemaker Mechanics and Actuation 
A pacemaker is an electronic device implanted into a patient 
to regulate his or her heart rhythm. It generally consists of a 
battery and electronic circuits sealed in a metal enclosure with 
leads. The number and the use of these leads are dependent on 
the pacemaker model. A DDD (Dual chamber sensing, Dual 
chamber pacing, and Dual mode of response) pacemaker has 
two leads attached to a patient’s right atrium and right 
ventricle to sense the electrical activity of the heart and apply 
the appropriate stimulus to pace the heart if an arrhythmia is 
detected.  

Common nomenclature for pacemaker activities include AS 
(atrial sense) if the pacemaker detected a signal from the 
atrium, VS (ventricular sense) if the pacemaker detected a 
signal from the ventricle, AR (atrial refractory) if the 
pacemaker detected a signal from the atrium during a 
refractory period, VR(ventricular refractory) if the pacemaker 
detected a signal from the ventricle during a refractory period, 
AP (atrial pace) if the pacemaker paced the atrium, and VP 
(ventricular pace) if the pacemaker paced the ventricle [9].   

C. Electrogram 
An intracardiac electrogram (EGM) is a recording of the 
potential differences between two electrodes on each lead of a 

pacemaker. In a DDD pacemaker, one lead senses the intra-
atrial EGM; the other, the intra-ventricular EGM. The 
pacemaker uses these recordings to time appropriate events for 
pacing [9].  

D. Pacemaker Timing Cycles 
Fig. 2 presents an overview of the basic timing cycles of a 
DDD pacemaker. The five different timing cycles are denoted 
as LRI, URI, AVI, PVARP, and VRP.  

The Lowest Rate Interval (LRI) timing cycle is initiated in 
response to ventricular events (VS, VP) and helps to prevent 
bradycardia, or a slower-than-normal heart rhythm. Depending 
on the algorithm, the pacemaker will deliver ventricular 
pacing if another ventricular event is not detected after the 
LRI, or will deliver atrial pacing if an atrial event (AS, AP) is 
not detected in the Atrial Escape Interval (AEI) which is 
initiated during a ventricular event and is equal to the length of 
the LRI minus the length of the AVI. 

The Upper Rate Interval (URI) timing cycle is initiated in the 
same way as the LRI and helps to prevent tachycardia, or a 
higher-than-normal heart rhythm. If an atrial sense is detected 
early, the pacemaker will wait until the end of the URI period 
to deliver ventricular pacing. 

 
Fig. 2. Timing cycles of a DDD pacemaker [10] 

E. Timed Automata Modeling 
To best model the operations of a pacemaker, a timed 
automata is used. Timed automata are finite automata with a 
finite set of clocks [11]. Each state of a timed automata model 
is therefore not only event-based, but also time-based. This is 
commonly used for modeling systems that are triggered by 
time-based events. UPPAAL is a standard software tool used 
to help generate timed automata models, and to verify these 
models. 

A common example of a timed automata model is a vending 
machine, shown in Fig. 3a. The vending machine stays in an 
idle state, defined by the node location “machine_start”. If a 
user gives money, the vending machine changes state to the 
“choose” location. Depending on the user’s choice, the 
vending machine can either release a bag of chips, bag of 
pretzels, or bag of candy. After roughly five seconds, the 
machine returns back to the idle state. The user can also be 
expressed as an automata model as well. Once the user gives 
money, the user changes state to the “decide” location. The 
user can then decide to choose chips, pretzels, or candy. Once 
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that decision is made, the user returns back to an idle state as 
well. 

 

Fig. 3. (a) A timed automata model of a typical vending machine operation. 
(b) A timed automata model of a typical vending machine user operation. 

III. METHODOLOGY 

A. Pacemaker Modeling 
In [2], Pajic et.al proposed a model-based design framework 
for pacemaker software verification and testing. The 
pacemaker specification [3] provided by the device 
manufacturers was converted to a Timed Automata model 
representation. As the first step, the safety of the specification 
is evaluated by formally verifying the pacemaker model in 
closed-loop with a model of the heart.  

In this project, we use model-based conformance testing to 
check whether a pacemaker software implementation has 
successfully implemented its specification. With proved safety 
of the specification and its rigorous implementation, the safety 
of the pacemaker software can be guaranteed. 

Fig. 4 presents an overview of the steps used to produce a 
pacemaker model. In order to create a pacemaker model that 
can take in specifications from manufacturers, a UPPAAL 
Timed Automata model of the operations of a pacemaker is 
constructed with adjustable parameters. Once the Timed 
Automata model is verified, it is then converted into a 
MATLAB model for simulation. The MATLAB model is then 
tested to ensure that the pacemaker operations can be 
appropriately adjusted to meet device specification. Once 
complete, the MATLAB model is then implemented into a 
hardware platform, which simulates in real-time the operations 
of a pacemaker according to specification. 

B. Testing Framework 
The testing framework (Fig. 5) consists of a Test Generator 
and a Test Platform. Given a pacemaker specification in timed 
automata representation, the Test Generator generates a series 
of test cases so that the executions of the test cases satisfy 
certain coverage criteria. Each test case consists of a sequence 
of inputs and expected outputs. The test platform executes the 
test case by sending the inputs to the pacemaker 
implementation and compares its output with the expected 
output specified in the test case. If the pacemaker 
implementation passes all the test cases, we conclude that the 
pacemaker conforms to its specification.	
  	
  

 
Fig. 5 Testing framework	
  

IV. UPPAAL MODEL SPECIFICATIONS 

A. Previous Work 
In [12], Jiang et.al have developed timed automata models of 
pacemakers in UPPAAL, which have closely followed the 
timing cycles specified in Section II. This however, presents 
problems with scaling the model to all pacemaker 
specifications. Due to the proprietary nature of pacemaker 
software, it is difficult to determine how the specific timing 
operations of any pacemaker work. Pacemakers may use more 
timers specified in Section II and perform more complex 
operations. Since these factors are unknown, testing these 
pacemakers is therefore black box; there is no means of 
determining internally in software how the pacemaker 
operates. The model that serves as a ground truth for these 
tests must then take these considerations into account. In order 
to create a model that can incorporate all pacemaker 
operations the authors propose a two-clock timed automata 
model. 

Fig. 4. Pacemaker Modeling Framework         

 

(a) (b) 
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B. Two Clock Model 
 

Fig. 6 (a) A multiple clock pacemaker operation model. (b) A two clock 
pacemaker operation model. [9] 

 
A two-clock timed-automata model of a pacemaker (Fig. 6(b)) 
uses a clock that times ventricular events (VS, VR, VP) and 
another that times atrial events (AS, AR, AP). By removing 
multiple timers and basing operating decisions on only two 

timers, the model increases its scalability of incorporating 
different pacemaker models. Furthermore, the basic timing 
cycles of a pacemaker are also retained. Instead of resetting 
different timers intermittently and turning them on and off, the 
model represents the basic timing cycles by using the current 
clock time and comparing it to an expected timing cycle.  

Table I lists the notations used in the model and Figs. 7,8,9 
present the clock operations, the chamber event detection 
logic, and the pacing decisions respectively. In all instances, 
when an atrial clock begins to time, the beginning of the timer 
is the PAAB, PAARP and TAVI period, then the PVAB and 
the PVARP period. Similarly, when the ventricular clock 
begins to time, the beginning of the timer is the PVVB and 
PVVRP period, then the PAVB, PAVRP, and VSP period. In 
both cases, the TURI and TLRI are checked to ensure that the 
heart is not beating too slowly or too quickly. 

 

 
 

Notation Definition Notation Definition 
A_clk The current time of the atrial clock PAAB Post-Atrial Atrial Blocking period, a period in 

the atrial clock right after an atrial event that 
blocks any atrial stimulus. 

V_clk The current time of the ventricular clock PAVB Post-Atrial Ventricular Blocking period, a period 
in the atrial clock right after an atrial event that 

blocks any ventricular stimulus. 
A_det “If atrial event is detected”. A Boolean to 

determine if an atrial event occurred before a 
ventricular event. 

PVAB Post-Ventricular Atrial Blocking period, a period 
in the ventricular clock right after a ventricular 

event that blocks any atrial stimulus. 
V_det “If ventricular event detected”. A counter that 

counts the amount of times a ventricular event 
occurs before an atrial event. 

PVVB Post-Ventricular Ventricular Blocking period, a 
period in the ventricular clock right after a 

ventricular event that blocks any ventricular 
stimulus. 

VSP Ventricular Safety Pacing. A Boolean that 
determines if ventricular safety pacing should 

be applied. 

PAARP Post-Atrial Atrial Refractory Period, a period in 
the atrial clock right after an atrial event that 
determines if an atrial event is defined as AR. 

Aget If atrial event was detected. A Boolean that 
determines if an atrial event was detected 

PAVRP Post-Atrial Ventricular Refractory Period, a 
period in the atrial clock right after an atrial 

event that determines if a ventricular event is 
defined as VR. 

Vget If ventricular event was detected. A Boolean 
that determines if ventricular event was 

detected 

PVARP Post-Ventricular Atrial Refractory Period, a 
period in the ventricular clock right after a 

ventricular event that determines if an atrial 
event is defined as AR. 

AP Atrial Pacing event PVARP_def The defined time for a Post-Ventricular Atrial 
Refractory Period 

AS Atrial Sensing event VSP_thresh Ventricular safety pacing threshold period, a 
period in the atrial clock right after an atrial 

event that if enabled, will cause the pacemaker to 
send a VP after this period. 

AR Atrial Refractory event TLRI Total Lower Rate Interval Time, the longest time 
any atrial-to-atrial or ventricular-to-ventricular 

event can be. 
VP Ventricular Pacing event TURI Total Upper Rate Interval Time, the shortest any 

atrial-to-atrial or ventricular-to-ventricular event 
can be. 

VS Ventricular Sensing event TAVI Total Atrial Ventricular Interval Time, the period 
between any atrial-to-ventricular event. 

VR Ventricular Refractory event TLRI-TAVI A derived clock time using TLRI and TAVI. 
Represents the Atrial Escape Interval, or the 

period between any ventricular-to-atrial event. 
 

Table I. List of notations used for this model. 
 

(b) 

(a) 
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The atrial clock (Fig. 7(a)) is reset when an AS or AP is 
detected. Additionally, A_det is turned true, and V_det is 
reset. To ensure AV synchrony, if the ventricular clock is 
greater than the Atrial Escape Interval, the ventricular clock is 
reset back the total Atrial Escape Interval Time.  

The ventricular clock (Fig. 7(b)) is reset when a VS, VP, or 
VR is detected. Additionally, A_det is turned false, and V_det 
increments 1 to count the ventricular event. 

For atrial event detection (Fig. 8(a)), if Aget is true the model 
enters a state that decides how the event will be recognized as. 
The pacemaker detects the atrial event as AS if the atrial clock 
time is past PAARP and if the ventricular clock time is past 
PVARP. The pacemaker detects the atrial event as AR if the 
atrial clock time is past PAAB and is in PAARP, or if the 
ventricular clock time is past PVAB and is in PVARP. If the 
atrial clock is in PAAB, or if the ventricular clock in PVAB, 
the atrial event is ignored. 

For ventricular event detection (Fig. 8(b)), if Vget is true the 
model enters a state that decides how the event will be 
recognized as. Additionally, PVARP is reset to PVARP_def, if 
in case the value of PVARP is changed. If the atrial clock time 
is in the VSP_thresh and is past PAVB, the pacemaker ignores 
the event, and enables VSP. If the atrial clock is past 

VSP_thresh and if the ventricular clock is past PVVRP, the 
pacemaker detects the ventricular event as VS. Before 
returning back to the initial idle state, the model evaluates a 
few more cases. If V_det equals 0, the model returns back to 
the idle state. Otherwise, if V_det is greater than or equal to 1, 
the model checks if PVARP_def is greater than or equal to 
400. If it is, the model returns back to the initial state. 
Otherwise, it assigns PVARP to 400. If the ventricular clock is 
past PVVB and is in PVVRP, the pacemaker recognizes the 
event as VR. If PVARP_def is greater than or equal to 400, 
the model will return back to the idle state; otherwise, it will 
assign PVARP to 400. If the atrial clock is past PAVB, or if 
the ventricular clock is in PVVB, the event is ignored. 

For atrial pacing (Fig. 9(a)), the model simply provides pacing 
if the atrial clock is greater than or equal to TLRI.  

For ventricular pacing (Fig. 9(b)), the model provides pacing 
if the ventricular clock is greater than or equal to TLRI, or if 
all of the conditions are met: 1) the atrial clock is greater than 
or equal to TAVI, 2) the ventricular clock is greater than or 
equal to TURI, 3) A_det is true, and 4) V_det equals zero. If 
VSP is enabled, the ventricular pacing model goes to the 
VSP_ready state. Once the atrial clock time is greater than 
VSP_thresh, the model provides pacing. 

Fig. 7 (a) Atrial timer model. (b) Ventricular timer model. 

(b) (a) 

Fig. 8 (a) Atrial event detection model. (b) Ventricular event detection model 
 

(a) (b) 
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C. Results and Discussion 
This UPPAAL model now serves as the starting point for 
creating real-time system model. Due to its decreased reliance 
on multiple timers, this pacemaker model is more capable of 
implementing more specifications. Additionally, the major 
timing cycles can be adjusted and changed in this model to 
meet general pacemaker specifications. Furthermore, 
UPPAAL is also capable of outputting the operation of the 
model in a symbolic trace format, which can later be used to 
help generate test cases. 

V. MATLAB IMPLEMENTATION 
A. Motivation 

Though UPPAAL is a versatile tool for constructing and 
verifying timed automata models, there are some limitations. 
The timed-automata model simulator in UPPAAL expresses 
the changes in the model in a state-to-state format. This makes 
it difficult to visualize the changes in the model in real time, 
and to provide error correction if the model changed to a 
specific state at an inappropriate time.  

Furthermore, for this project, the model must be able to act as 
a ground-truth to test if a pacemaker is functioning correctly. 
Therefore, the model must be in a format that is easy to 
compare against any pacemaker. Since the exact pacemaker 
software is not known, it is difficult to express a specific 
pacemaker in a UPPAAL format to make it comparable to the 
UPPAAL model. UPPAAL is also not able to check and 
compare two timed automata models and provide quantifiable 
data on the differences. 

The authors of this paper implemented the UPPAAL model 
into MATLAB. Because of UPPAAL’s code structure, the 
model is very easily translatable, and MATLAB provides 
many libraries to help simulate and visualize the model in a 
time-step format. Additionally, a virtual tester can be 
implemented on MATLAB to test the model against test cases. 

B. Tester 
i. Test Case 

Fig. 10 presents the file format for test cases. The left column 
indicates time in milliseconds of an expected event, and the 
right column indicates the type of event. The numbers in the 
second column represent the following: 

• 1: Atrial Input given to the pacemaker 

• 2: Ventricular Input given to the pacemaker 

• 3: Expected atrial pacing from the pacemaker 

• 4: Expected ventricular pacing form the pacemaker 

These test files are fed into the tester to help inform when 
stimuli should be applied to the pacemaker and when pacing 
events should occur. 

 
Fig. 10. Test Case File.  

 
ii. Algorithm 

Since testing the pacemaker is black box and the current state 
of the pacemaker is unknown, prior to testing, the pacemaker 
needs to be set into a known state. This helps to ensure that the 
test was performed when the pacemaker was operating 
appropriately. 

 To set the pacemaker in a state that is known for testing, an 
initializer file (Fig. 11) specific to the specification is entered 
into the tester. The initializer file is in the same format as a 
test file, but consists only of atrial inputs and ventricular 
inputs to simulate a natural heart rhythm. 

(a) (b) 

Fig. 9 (a) Atrial Pacing Model. (b) Ventricular Pacing Model. 
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Once the pacemaker is initialized, the tester reads in the test-
case file line by line. Additional parameters, such as the 
acceptable range of error for the proper time for pacing can be 
implemented into the tester algorithm. Fig. 12 presents some 
sample output of the tester algorithm. 

Once the current test case is complete, the tester reads the next 
test case, and evaluates. If the next test case is a sensing event, 
the tester will wait until that time to give the appropriate 
sensing signal.  

 
Fig. 11. A sample initializer file. 

 
If an atrial pace or ventricular pace is detected at a time not 
specified by the current test case, the tester states the error and 
ends the test. Errors that can be reported are early, late, or 
unexpected pacing. The tester algorithm evaluates the reason 
for the error by first checking if the pacing was expected in the 
current test case, but not within the expected time. 

Fig. 12. Sample output results of tester. 

If the pacing was not expected with the current test case (i.e. 
the current test case expected an atrial pace, but a ventricular 
pace was detected), the tester reads the test cases immediately 
before and after the current test case, and evaluates if pacing 
was specified in said test cases. If those test cases did not 
specify a pacing event, the error is defined as ‘unexpected 
pacing’. Likewise, if the next test case specified the pacing 
event, the error is defined as ‘early pacing’. If the previous test 
case specified the pacing event, the error is defined as ‘late 
pacing’. 

C. MATLAB Model 
With the tester, the MATLAB pacemaker model was 
evaluated using some initial Medtronic tests for a DDD 
pacemaker [13]. Shown are 2 of the 75 tests that were done 
(Fig. 13, Fig. 14). A green highlight indicates that the 
pacemaker properly paced the atrium at the right time; a blue 

highlight indicates that the pacemaker properly paced the 
ventricle at the right time; and a red highlight indicates that the 
pacemaker paced at the incorrect time. Of the 75 tests, the 
pacemaker model passed 72, thereby passing 96% of the tests. 

 
Fig. 13. A Medtronic test that the pacemaker passed. 

D. Results and Discussion 

The current pacemaker model has been tested against some 
Medtronic tests. The initial results show that the model can 
represent most tests. Some additional adjustments of the 
model can be made in UPPAAL or MATLAB and evaluated 
again.  

Additionally, testing the pacemaker also served to evaluate if 
the tester algorithm is capable of determining errors, and if it 
is capable of determining if the pacemaker model passed the 
tests. Since the algorithm has been proven to work, this 
algorithm can be implemented in hardware. The next section 
discusses the efforts to transfer the current tester algorithm and 
pacemaker model into hardware. 

 
 

Fig. 14. A Medtronic test that the pacemaker failed 

initializing... 
  
starting test 
Pacemaker paced ventricle on time at t=0. (Expected at t=0. Misalignment: 0) 
sent ventrical signal at t=50. 
sent atrial signal at t=200. 
Pacemaker paced atrium on time at t=750. (Expected at t=750. Misalignment: 0) 
Pacemaker paced ventricle on time at t=1001. (Expected at t=1000. Misalignment: 1) 

initializing... 
  
starting test 
Pacemaker paced ventricle on time at t=0. (Expected at t=0. Misalignment: 0) 
sent ventrical signal at t=300. 
ERROR: Pacemaker incorrectly paced atrium at t=800. 
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VI. HARWARE IMPLEMENTATION 

A. Architecture 
A hardware implementation that can read in pacemaker 
signals and send out stimuli is needed in order to interface 
with a pacemaker to conduct tests. To increase user-
friendliness a graphic user interface should make it simple for 
users to generate a series of test cases that meet specific 
criteria, send the cases to the tester, and then analyze the test 
results. 
 
To meet these design goals, we propose the following test 
setup (Fig. 15): 

• 1) A MATLAB graphic user interface that allows for 
users to set up and perform different tests to the 
pacemaker. 

• 2) A microcontroller that can connect to the computer 
via USB and be capable of receiving information 
from MATLAB about the test, and perform it on a 
pacemaker.	
  

B. Development 
Previous work by Jiang et.al [8] has used FPGAs to implement 
system models of medical devices into a real-time setting. 
Though there are many benefits of using FPGAs for real-time 
systems, such as faster processing speed, FPGAs can get 
costly, are difficult to program, and may not be cost-effective 
relative to the task needed to be completed.  

Since the tester is not very computational intensive, we 
decided to use the FRDM-KL25Z board as the hardware 
platform for the pacemaker tester. The FRDM KL25Z (Fig. 
16) is a 48 MHZ, 32-bit ARM Cortex microcontroller with a 
serial USB interface. The tester detects pacemaker signals 
using digital interrupts, and produces simulated atrium and 
ventricle signals using GPIO pins. 

Since the system is real-time, some protocols for the tester 
algorithm were changed to make the system operate more 
efficiently. The changes are as follows: 

• To reduce the amount of real-time computations 
needed for the tester hardware to operate, reporting of 
information is done at the end of the test instead of 
real time. This helps to reduce the amount of time 
needed to send data back to the computer.	
  

• Instead of sending the tester hardware the test case 
files line-by-line, whole, single files are sent to the 
hardware. This helps to further reduce the time 
needed to send data between the computer and tester 
board.	
  

• Error reporting is done at the end of the test, and 
through MATLAB. The tester board sends to the 
computer a timed recording of the pacemaker 
operations. A cross comparison between the expected 
operation and the actual operation is then done in 
MATLAB to evaluate if the pacemaker passed the 
test or not.	
  
	
  

	
   	
  
Fig. 16. FRDM-KL25Z board 

C. Pacemaker Implementation 
To help in the process of testing and evaluating the tester 
hardware, the MATLAB pacemaker model was implemented 
into a FRDM-KL25Z board. Fig. 17 shows typical operation 
of the pacemaker hardware model when not given stimulus. 
The hardware implementation of the pacemaker uses two 
GPIO pins to simulate atrium and ventricle pacing, and two 
interrupts to simulate the detection of atrium and ventricle 
stimulus respectively. The device provides pacing at 60 beats 
per minute when no atrial or ventricular events are detected. 

Computer interface using Matlab 
Connection to 

Pacemaker Tester using 
USB serial protocols. 

Send test case 

Send test result 

Pacemaker Tester 
Hardware 

Pacemaker 

Send timed stimuli 

Send pacing signals 

Connection to pacemaker 
using GPIO pins and 

interrupts. 

Fig. 15. Pacemaker Tester Setup. 
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D. Matlab Graphic User Interface 
To increase usability of the system, a graphic user interface 
was created (Fig. 18). The interface allows for the user to 
import test case files and select which tests of those tests to 
perform. Different test parameters can be adjusted, and the 
user can also select whether to run the test against a 
simulation, or with the hardware tester. The interface also 
allows the user to change the timing operations of the 
pacemaker implementation if the pacemaker implementation 
is used. After each test is performed, the interface displays the 
visual results, as well as the results in text. 

 

E. Testing 
Some initial testing was performed to evaluate the efficiency 
of the hardware tester software. Serial communication 
protocols between the tester hardware and the MATLAB 
interface were evaluated to determine the speed of 
transmitting data. The full platform (Fig. 19) has both the 
tester and pacemaker implementation communicating with 
each other, and results of the tests are transmitted back to the 
computer interface for analysis. 

Fig. 17. Pacemaker hardware operation given no stimulus. (a) Ventricle pacing provided by the pacemaker. (b) 
Atrium pacing provided by the pacemaker. (c) Overall operation. Ventricle-to-ventricle pacing time and atrium-

to-atrium pacing time were 1000 ms (60 beats/min). 

(a) 

(c) 

(b) 

Fig. 18. Matlab graphic user interface for the pacemaker testing platform 
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VII. CONCLUSION 
Using a pacemaker timed automata model in UPPAAL, a 
hardware implementation was constructed in addition to a 
tester to evaluate the operation of a pacemaker. The current 
version of the pacemaker-testing platform reads in a test-case 
file and evaluates the pacemaker depending on the expected 
events given by the test case file. So far, 75 tests from 
Medtronic have been used to test the pacemaker model and 
have been executed using the testing platform. To increase the 
number of tests that can be performed, later iterations of this 
testing platform will be able to use the pacemaker model to 
generate multiple different tests. 

The pacemaker model that was constructed can take in 
different types of timing parameters. Therefore, the model can 
be used to predict the expected operations of different 
pacemakers. Since the current pacemaker model is based on a 
typical DDD pacemaker operation, later iterations of this 
model will be able to also adjust the algorithms used to 
regulate the heart. 

A testing platform using FRDM-KL25Z microcontrollers has 
been also created which will serve as an interface to test 
different pacemakers. Evaluation and analysis of the 
pacemaker operation can also be recorded and done through 
MATLAB.   

In conclusion, the pacemaker model and testing platform 
presented in this paper provide a framework to create a robust 
testing platform for pacemakers. A complete testing platform 
will provide medical device companies a tool to properly 
evaluate pacemaker software. It will also provide the FDA 
with a streamlined method to validate and certify pacemakers 
before allowing them to go on the market. 

VIII. FUTURE WORK 

A. Pacemaker Modeling 

i. More pacemaker mode algorithms 
Pacemakers can function in different ways depending on the 
mode. Generally speaking, pacemakers can sense, pace, and 
respond to exclusively the atrium, ventricle, or both 
respectively. The current pacemaker model implemented is a 
DDD pacemaker, which allows for the sensing, pacing, and 
responding of both chambers. To increase the robustness of 
the pacemaker model, these modes should be implemented, 
which will then further help to incorporate more pacemakers 
into the testing platform. 

ii. Increase coverage 

Additional algorithms used in pacemakers to treat specific 
heart arrhythmias, such as endless loop tachycardia, are 
different for each pacemaker. However, the overall expected 
outcome is the same. These additional algorithms should also 
be incorporated into the pacemaker model. 

B. Testing Algorithms 

i. Quantification of test coverage 

Though an exhaustive evaluation of a pacemaker can be done 
with a series of different test cases, the process is time-
consuming, and even still, may leave out certain cases. 
Quantification of overall coverage of series of tests can help to 
determine if additional tests need to be performed to determine 
if a pacemaker’s software is working within safe conditions, 
or if a selective series of tests instead of all can be performed 
for maximum coverage. The algorithms needed to quantify the 
coverage of test cases should be implemented in later 
iterations of the pacemaker-testing platform. 

ii. Symbolic to Concrete Trace  

UPPAAL is capable of simulating the changes of a timed-
automata model in an event-based format. This symbolic 
representation of the changes in the model can be converted 
into a concrete format, where the exact times of the changes 
can be recorded. By implementing this technique with the 
UPPAAL pacemaker model, test cases can be quickly and 
easily generated. Since the simulation can last as long as 
needed, tests can also be varied in overall time, which can 
further help to do more extensive testing for longer periods of 
time. 

iii. Initialization sequence 

In order to set a pacemaker into a known state for testing, an 
initialization sequence is run which simulates a regular heart 
rhythm. Increase the robustness of the initialization sequence, 
algorithms can be constructed to test if the pacemaker being 
tested is in a proper state after given an initialization sequence. 
The initialization sequence can then be adjusted to different 
pacemakers if needed. 

(b) 

(a) 

Fig. 19. The full tester platform. (a) The pacemaker model 
implemented onto a board. (b) The tester board that interfaces with 

MATLAB. 
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IX. APPLICATIONS 

A. Pacemaker Development and Testing 
The pacemaker-testing platform can be used by medical 
device companies to help develop and test new pacemaker 
software. Since the platform is standardized, companies can 
perform the same tests to determine if the software they have 
developed is operating within safe conditions. Since the 
testing platform automates the testing process, using the 
platform can also aid in rapid development, and faster 
feedback of results.  

B. FDA Test Approval 
The pacemaker-testing platform can be used by the FDA as a 
standard assessment to test, validate, and verify pacemakers 
before they get released on the market. Currently, the FDA 
certifies implantable cardiac devices based on extensive test 
reports provided by the manufacturers. By using the 
pacemaker-testing platform, the FDA can have a formal 
method to approve pacemakers, which can also help in 
providing companies faster approval or disapproval. 
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