

1

Abstract— Between 1990 and 2000, over 600,000 implantable
cardiac pacemakers and cardioverter defibrillators were
recalled. 41% of these devices were recalled due to device
software issues. Software-related recalls are increasing with the
growing complexity of medical device software, which is
responsible for the life-critical operation with the organ.
Currently, there are no formal methods to test and verify the
safety of implantable cardiac device software. To meet this need,
a pacemaker-testing platform has been developed to
automatically verify that the software in a pacemaker is
functioning appropriately and determine if the pacemaker
implementation conforms to the device software design
specifications. A testing methodology was developed where tests
were automatically generated from a model of the pacemaker
that satisfied the specifications. These tests checked the software
implemented in the physical pacemaker were in conformance
with the design specifications and ensured safe operation. This
paper outlines the steps used to create this testing platform, as
well as the steps used to construct a pacemaker model for testing.
By using this test framework as a standard for medical device
testing, the US Food and Drug Administration (FDA) will
potentially have a more streamlined method to certify the safety
of medical device software.

Index Items: Pacemakers, software validation, model-based
development, safety analysis

I. INTRODUCTION
Over the past few decades, implantable cardiac devices such
as pacemakers have been widely used to treat arrhythmia,
which are heart diseases featuring irregular heart rhythms.
However, the number of life-threatening device malfunctions
increases as the complexity of the device software increases.
Between 1990 and 2000, over 600,000 implantable cardiac
devices were recalled, and the percentage of medical device
recalls due to software-related issues increased from 10% to
21% [1].

Currently there is no systematic way to evaluate the safety of
pacemaker software. The Food and Drug Administration
(FDA) certifies devices like pacemakers based on the
extensive test reports submitted by device manufacturers [2].
The primary approach for system-level testing of pacemakers
is unit testing, which requires playing a pre-recorded

electrogram signal into the pacemaker and recording the
output of the pacemaker. This helps to evaluate if the input
signal triggered the appropriate response by the pacemaker,
but has no means of evaluating if the response was appropriate
for the patient condition [3]. Moreover, this open-loop testing
method by the device manufacturers is not able to find
potential safety violations that involve closed-loop interaction
between the device and its environment (i.e. the heart or the
patient).

The test cases used to evaluate pacemakers are also not
systematically generated to guarantee coverage over all
possible scenarios in the software specification. As a result,
open-loop testing cannot guarantee the safety of the
pacemaker software. Furthermore, with the patient in the loop,
it is necessary to devise a new testing methodology, as all
possible cases cannot be enumerated.

Previous efforts on the verification of time-critical and safety-
critical embedded systems have been done [4]; however, these
methods have only started to be implemented for medical
device evaluation and verification. D. Arney, R. Jetley, P.
Jones, I. Lee, and O. Sokolsky [5] have used Extended Finite
State Machines for model checking of a resuscitation device.
Additionally, formalized methods to improve medical device
protocols [6] and safety [7] have been created. However, the
authors either used a simplified patient model or did not use a
patient model in their methods.

The focus of this paper is on the development of tools and
methodologies to test and formally verify whether the
software in pacemakers is safe within the closed-loop context
of the patient. Section II provides a brief overview of heart
electrophysiology, the operation of pacemakers, and timed
automata modeling. Section III provides the Methodology for
developing the tools. Section IV details UPPAAL timed
automata modeling efforts. Section V describes how the
UPPAAL Timed Automata Model was translated into a
MATLAB Implementation. Section VI describes how the
MATLAB Implementation was translated into a hardware
implementation. Section VII concludes the work. Section VIII
presents applications of the project. Section IX describes
future work.

Model-Based Conformance Testing for
Implantable Pacemakers

George Major Chen, Biomedical Engineering, Johns Hopkins University, SUNFEST Fellow

Zhihao Jiang, Computer and Information Science, University of Pennsylvania, Graduate Student

Rahul Mangharam, Ph.D. Department of Electrical and Systems Engineering, University of

Pennsylvania

2

II. BACKGROUND

A. Heart Anatomy and Electrophysiology
To maintain and regulate proper function, the heart generates
electrical impulses which help to organize muscle contractions
involved in pumping blood to the rest of the body. The heart
consists of four chambers, the left and right atriums, which
obtain blood from the body; and the left and right ventricles,
which obtain blood from the left and right atriums respectively
and pump blood to the body (Fig 1.). A tissue located on the
right atrium, called the Sinoatrial (SA) node periodically self-
depolarizes. This depolarization signal then travels to both
atria, causing contractions which pushes blood into the
ventricles. The signal is then delayed at the Atrioventricular
(AV) node, which allows the ventricles to fill fully before
being stimulated. The His-Purkinje system then spreads the
signal to both ventricles, which causes contractions in the
ventricles to push blood to the rest of the body. Any
impairment or anomalies of this electrical system can cause
heart arrhythmias, which affect the heart’s ability to properly
pump blood to the rest of the body [8].

Fig 1. Heart Anatomy and Electrical Conduction System

B. Pacemaker Mechanics and Actuation
A pacemaker is an electronic device implanted into a patient
to regulate his or her heart rhythm. It generally consists of a
battery and electronic circuits sealed in a metal enclosure with
leads. The number and the use of these leads are dependent on
the pacemaker model. A DDD (Dual chamber sensing, Dual
chamber pacing, and Dual mode of response) pacemaker has
two leads attached to a patient’s right atrium and right
ventricle to sense the electrical activity of the heart and apply
the appropriate stimulus to pace the heart if an arrhythmia is
detected.

Common nomenclature for pacemaker activities include AS
(atrial sense) if the pacemaker detected a signal from the
atrium, VS (ventricular sense) if the pacemaker detected a
signal from the ventricle, AR (atrial refractory) if the
pacemaker detected a signal from the atrium during a
refractory period, VR(ventricular refractory) if the pacemaker
detected a signal from the ventricle during a refractory period,
AP (atrial pace) if the pacemaker paced the atrium, and VP
(ventricular pace) if the pacemaker paced the ventricle [9].

C. Electrogram
An intracardiac electrogram (EGM) is a recording of the
potential differences between two electrodes on each lead of a

pacemaker. In a DDD pacemaker, one lead senses the intra-
atrial EGM; the other, the intra-ventricular EGM. The
pacemaker uses these recordings to time appropriate events for
pacing [9].

D. Pacemaker Timing Cycles
Fig. 2 presents an overview of the basic timing cycles of a
DDD pacemaker. The five different timing cycles are denoted
as LRI, URI, AVI, PVARP, and VRP.

The Lowest Rate Interval (LRI) timing cycle is initiated in
response to ventricular events (VS, VP) and helps to prevent
bradycardia, or a slower-than-normal heart rhythm. Depending
on the algorithm, the pacemaker will deliver ventricular
pacing if another ventricular event is not detected after the
LRI, or will deliver atrial pacing if an atrial event (AS, AP) is
not detected in the Atrial Escape Interval (AEI) which is
initiated during a ventricular event and is equal to the length of
the LRI minus the length of the AVI.

The Upper Rate Interval (URI) timing cycle is initiated in the
same way as the LRI and helps to prevent tachycardia, or a
higher-than-normal heart rhythm. If an atrial sense is detected
early, the pacemaker will wait until the end of the URI period
to deliver ventricular pacing.

Fig. 2. Timing cycles of a DDD pacemaker [10]

E. Timed Automata Modeling
To best model the operations of a pacemaker, a timed
automata is used. Timed automata are finite automata with a
finite set of clocks [11]. Each state of a timed automata model
is therefore not only event-based, but also time-based. This is
commonly used for modeling systems that are triggered by
time-based events. UPPAAL is a standard software tool used
to help generate timed automata models, and to verify these
models.

A common example of a timed automata model is a vending
machine, shown in Fig. 3a. The vending machine stays in an
idle state, defined by the node location “machine_start”. If a
user gives money, the vending machine changes state to the
“choose” location. Depending on the user’s choice, the
vending machine can either release a bag of chips, bag of
pretzels, or bag of candy. After roughly five seconds, the
machine returns back to the idle state. The user can also be
expressed as an automata model as well. Once the user gives
money, the user changes state to the “decide” location. The
user can then decide to choose chips, pretzels, or candy. Once

3

that decision is made, the user returns back to an idle state as
well.

Fig. 3. (a) A timed automata model of a typical vending machine operation.
(b) A timed automata model of a typical vending machine user operation.

III. METHODOLOGY

A. Pacemaker Modeling
In [2], Pajic et.al proposed a model-based design framework
for pacemaker software verification and testing. The
pacemaker specification [3] provided by the device
manufacturers was converted to a Timed Automata model
representation. As the first step, the safety of the specification
is evaluated by formally verifying the pacemaker model in
closed-loop with a model of the heart.

In this project, we use model-based conformance testing to
check whether a pacemaker software implementation has
successfully implemented its specification. With proved safety
of the specification and its rigorous implementation, the safety
of the pacemaker software can be guaranteed.

Fig. 4 presents an overview of the steps used to produce a
pacemaker model. In order to create a pacemaker model that
can take in specifications from manufacturers, a UPPAAL
Timed Automata model of the operations of a pacemaker is
constructed with adjustable parameters. Once the Timed
Automata model is verified, it is then converted into a
MATLAB model for simulation. The MATLAB model is then
tested to ensure that the pacemaker operations can be
appropriately adjusted to meet device specification. Once
complete, the MATLAB model is then implemented into a
hardware platform, which simulates in real-time the operations
of a pacemaker according to specification.

B. Testing Framework
The testing framework (Fig. 5) consists of a Test Generator
and a Test Platform. Given a pacemaker specification in timed
automata representation, the Test Generator generates a series
of test cases so that the executions of the test cases satisfy
certain coverage criteria. Each test case consists of a sequence
of inputs and expected outputs. The test platform executes the
test case by sending the inputs to the pacemaker
implementation and compares its output with the expected
output specified in the test case. If the pacemaker
implementation passes all the test cases, we conclude that the
pacemaker conforms to its specification.	 	

Fig. 5 Testing framework	

IV. UPPAAL MODEL SPECIFICATIONS

A. Previous Work
In [12], Jiang et.al have developed timed automata models of
pacemakers in UPPAAL, which have closely followed the
timing cycles specified in Section II. This however, presents
problems with scaling the model to all pacemaker
specifications. Due to the proprietary nature of pacemaker
software, it is difficult to determine how the specific timing
operations of any pacemaker work. Pacemakers may use more
timers specified in Section II and perform more complex
operations. Since these factors are unknown, testing these
pacemakers is therefore black box; there is no means of
determining internally in software how the pacemaker
operates. The model that serves as a ground truth for these
tests must then take these considerations into account. In order
to create a model that can incorporate all pacemaker
operations the authors propose a two-clock timed automata
model.

Fig. 4. Pacemaker Modeling Framework

(a) (b)

4

B. Two Clock Model

Fig. 6 (a) A multiple clock pacemaker operation model. (b) A two clock
pacemaker operation model. [9]

A two-clock timed-automata model of a pacemaker (Fig. 6(b))
uses a clock that times ventricular events (VS, VR, VP) and
another that times atrial events (AS, AR, AP). By removing
multiple timers and basing operating decisions on only two

timers, the model increases its scalability of incorporating
different pacemaker models. Furthermore, the basic timing
cycles of a pacemaker are also retained. Instead of resetting
different timers intermittently and turning them on and off, the
model represents the basic timing cycles by using the current
clock time and comparing it to an expected timing cycle.

Table I lists the notations used in the model and Figs. 7,8,9
present the clock operations, the chamber event detection
logic, and the pacing decisions respectively. In all instances,
when an atrial clock begins to time, the beginning of the timer
is the PAAB, PAARP and TAVI period, then the PVAB and
the PVARP period. Similarly, when the ventricular clock
begins to time, the beginning of the timer is the PVVB and
PVVRP period, then the PAVB, PAVRP, and VSP period. In
both cases, the TURI and TLRI are checked to ensure that the
heart is not beating too slowly or too quickly.

Notation Definition Notation Definition
A_clk The current time of the atrial clock PAAB Post-Atrial Atrial Blocking period, a period in

the atrial clock right after an atrial event that
blocks any atrial stimulus.

V_clk The current time of the ventricular clock PAVB Post-Atrial Ventricular Blocking period, a period
in the atrial clock right after an atrial event that

blocks any ventricular stimulus.
A_det “If atrial event is detected”. A Boolean to

determine if an atrial event occurred before a
ventricular event.

PVAB Post-Ventricular Atrial Blocking period, a period
in the ventricular clock right after a ventricular

event that blocks any atrial stimulus.
V_det “If ventricular event detected”. A counter that

counts the amount of times a ventricular event
occurs before an atrial event.

PVVB Post-Ventricular Ventricular Blocking period, a
period in the ventricular clock right after a

ventricular event that blocks any ventricular
stimulus.

VSP Ventricular Safety Pacing. A Boolean that
determines if ventricular safety pacing should

be applied.

PAARP Post-Atrial Atrial Refractory Period, a period in
the atrial clock right after an atrial event that
determines if an atrial event is defined as AR.

Aget If atrial event was detected. A Boolean that
determines if an atrial event was detected

PAVRP Post-Atrial Ventricular Refractory Period, a
period in the atrial clock right after an atrial

event that determines if a ventricular event is
defined as VR.

Vget If ventricular event was detected. A Boolean
that determines if ventricular event was

detected

PVARP Post-Ventricular Atrial Refractory Period, a
period in the ventricular clock right after a

ventricular event that determines if an atrial
event is defined as AR.

AP Atrial Pacing event PVARP_def The defined time for a Post-Ventricular Atrial
Refractory Period

AS Atrial Sensing event VSP_thresh Ventricular safety pacing threshold period, a
period in the atrial clock right after an atrial

event that if enabled, will cause the pacemaker to
send a VP after this period.

AR Atrial Refractory event TLRI Total Lower Rate Interval Time, the longest time
any atrial-to-atrial or ventricular-to-ventricular

event can be.
VP Ventricular Pacing event TURI Total Upper Rate Interval Time, the shortest any

atrial-to-atrial or ventricular-to-ventricular event
can be.

VS Ventricular Sensing event TAVI Total Atrial Ventricular Interval Time, the period
between any atrial-to-ventricular event.

VR Ventricular Refractory event TLRI-TAVI A derived clock time using TLRI and TAVI.
Represents the Atrial Escape Interval, or the

period between any ventricular-to-atrial event.

Table I. List of notations used for this model.

(b)

(a)

5

The atrial clock (Fig. 7(a)) is reset when an AS or AP is
detected. Additionally, A_det is turned true, and V_det is
reset. To ensure AV synchrony, if the ventricular clock is
greater than the Atrial Escape Interval, the ventricular clock is
reset back the total Atrial Escape Interval Time.

The ventricular clock (Fig. 7(b)) is reset when a VS, VP, or
VR is detected. Additionally, A_det is turned false, and V_det
increments 1 to count the ventricular event.

For atrial event detection (Fig. 8(a)), if Aget is true the model
enters a state that decides how the event will be recognized as.
The pacemaker detects the atrial event as AS if the atrial clock
time is past PAARP and if the ventricular clock time is past
PVARP. The pacemaker detects the atrial event as AR if the
atrial clock time is past PAAB and is in PAARP, or if the
ventricular clock time is past PVAB and is in PVARP. If the
atrial clock is in PAAB, or if the ventricular clock in PVAB,
the atrial event is ignored.

For ventricular event detection (Fig. 8(b)), if Vget is true the
model enters a state that decides how the event will be
recognized as. Additionally, PVARP is reset to PVARP_def, if
in case the value of PVARP is changed. If the atrial clock time
is in the VSP_thresh and is past PAVB, the pacemaker ignores
the event, and enables VSP. If the atrial clock is past

VSP_thresh and if the ventricular clock is past PVVRP, the
pacemaker detects the ventricular event as VS. Before
returning back to the initial idle state, the model evaluates a
few more cases. If V_det equals 0, the model returns back to
the idle state. Otherwise, if V_det is greater than or equal to 1,
the model checks if PVARP_def is greater than or equal to
400. If it is, the model returns back to the initial state.
Otherwise, it assigns PVARP to 400. If the ventricular clock is
past PVVB and is in PVVRP, the pacemaker recognizes the
event as VR. If PVARP_def is greater than or equal to 400,
the model will return back to the idle state; otherwise, it will
assign PVARP to 400. If the atrial clock is past PAVB, or if
the ventricular clock is in PVVB, the event is ignored.

For atrial pacing (Fig. 9(a)), the model simply provides pacing
if the atrial clock is greater than or equal to TLRI.

For ventricular pacing (Fig. 9(b)), the model provides pacing
if the ventricular clock is greater than or equal to TLRI, or if
all of the conditions are met: 1) the atrial clock is greater than
or equal to TAVI, 2) the ventricular clock is greater than or
equal to TURI, 3) A_det is true, and 4) V_det equals zero. If
VSP is enabled, the ventricular pacing model goes to the
VSP_ready state. Once the atrial clock time is greater than
VSP_thresh, the model provides pacing.

Fig. 7 (a) Atrial timer model. (b) Ventricular timer model.

(b) (a)

Fig. 8 (a) Atrial event detection model. (b) Ventricular event detection model

(a) (b)

6

C. Results and Discussion
This UPPAAL model now serves as the starting point for
creating real-time system model. Due to its decreased reliance
on multiple timers, this pacemaker model is more capable of
implementing more specifications. Additionally, the major
timing cycles can be adjusted and changed in this model to
meet general pacemaker specifications. Furthermore,
UPPAAL is also capable of outputting the operation of the
model in a symbolic trace format, which can later be used to
help generate test cases.

V. MATLAB IMPLEMENTATION
A. Motivation

Though UPPAAL is a versatile tool for constructing and
verifying timed automata models, there are some limitations.
The timed-automata model simulator in UPPAAL expresses
the changes in the model in a state-to-state format. This makes
it difficult to visualize the changes in the model in real time,
and to provide error correction if the model changed to a
specific state at an inappropriate time.

Furthermore, for this project, the model must be able to act as
a ground-truth to test if a pacemaker is functioning correctly.
Therefore, the model must be in a format that is easy to
compare against any pacemaker. Since the exact pacemaker
software is not known, it is difficult to express a specific
pacemaker in a UPPAAL format to make it comparable to the
UPPAAL model. UPPAAL is also not able to check and
compare two timed automata models and provide quantifiable
data on the differences.

The authors of this paper implemented the UPPAAL model
into MATLAB. Because of UPPAAL’s code structure, the
model is very easily translatable, and MATLAB provides
many libraries to help simulate and visualize the model in a
time-step format. Additionally, a virtual tester can be
implemented on MATLAB to test the model against test cases.

B. Tester
i. Test Case

Fig. 10 presents the file format for test cases. The left column
indicates time in milliseconds of an expected event, and the
right column indicates the type of event. The numbers in the
second column represent the following:

• 1: Atrial Input given to the pacemaker

• 2: Ventricular Input given to the pacemaker

• 3: Expected atrial pacing from the pacemaker

• 4: Expected ventricular pacing form the pacemaker

These test files are fed into the tester to help inform when
stimuli should be applied to the pacemaker and when pacing
events should occur.

Fig. 10. Test Case File.

ii. Algorithm

Since testing the pacemaker is black box and the current state
of the pacemaker is unknown, prior to testing, the pacemaker
needs to be set into a known state. This helps to ensure that the
test was performed when the pacemaker was operating
appropriately.

 To set the pacemaker in a state that is known for testing, an
initializer file (Fig. 11) specific to the specification is entered
into the tester. The initializer file is in the same format as a
test file, but consists only of atrial inputs and ventricular
inputs to simulate a natural heart rhythm.

(a) (b)

Fig. 9 (a) Atrial Pacing Model. (b) Ventricular Pacing Model.

7

Once the pacemaker is initialized, the tester reads in the test-
case file line by line. Additional parameters, such as the
acceptable range of error for the proper time for pacing can be
implemented into the tester algorithm. Fig. 12 presents some
sample output of the tester algorithm.

Once the current test case is complete, the tester reads the next
test case, and evaluates. If the next test case is a sensing event,
the tester will wait until that time to give the appropriate
sensing signal.

Fig. 11. A sample initializer file.

If an atrial pace or ventricular pace is detected at a time not
specified by the current test case, the tester states the error and
ends the test. Errors that can be reported are early, late, or
unexpected pacing. The tester algorithm evaluates the reason
for the error by first checking if the pacing was expected in the
current test case, but not within the expected time.

Fig. 12. Sample output results of tester.

If the pacing was not expected with the current test case (i.e.
the current test case expected an atrial pace, but a ventricular
pace was detected), the tester reads the test cases immediately
before and after the current test case, and evaluates if pacing
was specified in said test cases. If those test cases did not
specify a pacing event, the error is defined as ‘unexpected
pacing’. Likewise, if the next test case specified the pacing
event, the error is defined as ‘early pacing’. If the previous test
case specified the pacing event, the error is defined as ‘late
pacing’.

C. MATLAB Model
With the tester, the MATLAB pacemaker model was
evaluated using some initial Medtronic tests for a DDD
pacemaker [13]. Shown are 2 of the 75 tests that were done
(Fig. 13, Fig. 14). A green highlight indicates that the
pacemaker properly paced the atrium at the right time; a blue

highlight indicates that the pacemaker properly paced the
ventricle at the right time; and a red highlight indicates that the
pacemaker paced at the incorrect time. Of the 75 tests, the
pacemaker model passed 72, thereby passing 96% of the tests.

Fig. 13. A Medtronic test that the pacemaker passed.

D. Results and Discussion

The current pacemaker model has been tested against some
Medtronic tests. The initial results show that the model can
represent most tests. Some additional adjustments of the
model can be made in UPPAAL or MATLAB and evaluated
again.

Additionally, testing the pacemaker also served to evaluate if
the tester algorithm is capable of determining errors, and if it
is capable of determining if the pacemaker model passed the
tests. Since the algorithm has been proven to work, this
algorithm can be implemented in hardware. The next section
discusses the efforts to transfer the current tester algorithm and
pacemaker model into hardware.

Fig. 14. A Medtronic test that the pacemaker failed

initializing...

starting test
Pacemaker paced ventricle on time at t=0. (Expected at t=0. Misalignment: 0)
sent ventrical signal at t=50.
sent atrial signal at t=200.
Pacemaker paced atrium on time at t=750. (Expected at t=750. Misalignment: 0)
Pacemaker paced ventricle on time at t=1001. (Expected at t=1000. Misalignment: 1)

initializing...

starting test
Pacemaker paced ventricle on time at t=0. (Expected at t=0. Misalignment: 0)
sent ventrical signal at t=300.
ERROR: Pacemaker incorrectly paced atrium at t=800.

8

VI. HARWARE IMPLEMENTATION

A. Architecture
A hardware implementation that can read in pacemaker
signals and send out stimuli is needed in order to interface
with a pacemaker to conduct tests. To increase user-
friendliness a graphic user interface should make it simple for
users to generate a series of test cases that meet specific
criteria, send the cases to the tester, and then analyze the test
results.

To meet these design goals, we propose the following test
setup (Fig. 15):

• 1) A MATLAB graphic user interface that allows for
users to set up and perform different tests to the
pacemaker.

• 2) A microcontroller that can connect to the computer
via USB and be capable of receiving information
from MATLAB about the test, and perform it on a
pacemaker.	

B. Development
Previous work by Jiang et.al [8] has used FPGAs to implement
system models of medical devices into a real-time setting.
Though there are many benefits of using FPGAs for real-time
systems, such as faster processing speed, FPGAs can get
costly, are difficult to program, and may not be cost-effective
relative to the task needed to be completed.

Since the tester is not very computational intensive, we
decided to use the FRDM-KL25Z board as the hardware
platform for the pacemaker tester. The FRDM KL25Z (Fig.
16) is a 48 MHZ, 32-bit ARM Cortex microcontroller with a
serial USB interface. The tester detects pacemaker signals
using digital interrupts, and produces simulated atrium and
ventricle signals using GPIO pins.

Since the system is real-time, some protocols for the tester
algorithm were changed to make the system operate more
efficiently. The changes are as follows:

• To reduce the amount of real-time computations
needed for the tester hardware to operate, reporting of
information is done at the end of the test instead of
real time. This helps to reduce the amount of time
needed to send data back to the computer.	

• Instead of sending the tester hardware the test case
files line-by-line, whole, single files are sent to the
hardware. This helps to further reduce the time
needed to send data between the computer and tester
board.	

• Error reporting is done at the end of the test, and
through MATLAB. The tester board sends to the
computer a timed recording of the pacemaker
operations. A cross comparison between the expected
operation and the actual operation is then done in
MATLAB to evaluate if the pacemaker passed the
test or not.	
	

	 	
Fig. 16. FRDM-KL25Z board

C. Pacemaker Implementation
To help in the process of testing and evaluating the tester
hardware, the MATLAB pacemaker model was implemented
into a FRDM-KL25Z board. Fig. 17 shows typical operation
of the pacemaker hardware model when not given stimulus.
The hardware implementation of the pacemaker uses two
GPIO pins to simulate atrium and ventricle pacing, and two
interrupts to simulate the detection of atrium and ventricle
stimulus respectively. The device provides pacing at 60 beats
per minute when no atrial or ventricular events are detected.

Computer interface using Matlab
Connection to

Pacemaker Tester using
USB serial protocols.

Send test case

Send test result

Pacemaker Tester
Hardware

Pacemaker

Send timed stimuli

Send pacing signals

Connection to pacemaker
using GPIO pins and

interrupts.

Fig. 15. Pacemaker Tester Setup.

9

D. Matlab Graphic User Interface
To increase usability of the system, a graphic user interface
was created (Fig. 18). The interface allows for the user to
import test case files and select which tests of those tests to
perform. Different test parameters can be adjusted, and the
user can also select whether to run the test against a
simulation, or with the hardware tester. The interface also
allows the user to change the timing operations of the
pacemaker implementation if the pacemaker implementation
is used. After each test is performed, the interface displays the
visual results, as well as the results in text.

E. Testing
Some initial testing was performed to evaluate the efficiency
of the hardware tester software. Serial communication
protocols between the tester hardware and the MATLAB
interface were evaluated to determine the speed of
transmitting data. The full platform (Fig. 19) has both the
tester and pacemaker implementation communicating with
each other, and results of the tests are transmitted back to the
computer interface for analysis.

Fig. 17. Pacemaker hardware operation given no stimulus. (a) Ventricle pacing provided by the pacemaker. (b)
Atrium pacing provided by the pacemaker. (c) Overall operation. Ventricle-to-ventricle pacing time and atrium-

to-atrium pacing time were 1000 ms (60 beats/min).

(a)

(c)

(b)

Fig. 18. Matlab graphic user interface for the pacemaker testing platform

10

VII. CONCLUSION
Using a pacemaker timed automata model in UPPAAL, a
hardware implementation was constructed in addition to a
tester to evaluate the operation of a pacemaker. The current
version of the pacemaker-testing platform reads in a test-case
file and evaluates the pacemaker depending on the expected
events given by the test case file. So far, 75 tests from
Medtronic have been used to test the pacemaker model and
have been executed using the testing platform. To increase the
number of tests that can be performed, later iterations of this
testing platform will be able to use the pacemaker model to
generate multiple different tests.

The pacemaker model that was constructed can take in
different types of timing parameters. Therefore, the model can
be used to predict the expected operations of different
pacemakers. Since the current pacemaker model is based on a
typical DDD pacemaker operation, later iterations of this
model will be able to also adjust the algorithms used to
regulate the heart.

A testing platform using FRDM-KL25Z microcontrollers has
been also created which will serve as an interface to test
different pacemakers. Evaluation and analysis of the
pacemaker operation can also be recorded and done through
MATLAB.

In conclusion, the pacemaker model and testing platform
presented in this paper provide a framework to create a robust
testing platform for pacemakers. A complete testing platform
will provide medical device companies a tool to properly
evaluate pacemaker software. It will also provide the FDA
with a streamlined method to validate and certify pacemakers
before allowing them to go on the market.

VIII. FUTURE WORK

A. Pacemaker Modeling

i. More pacemaker mode algorithms
Pacemakers can function in different ways depending on the
mode. Generally speaking, pacemakers can sense, pace, and
respond to exclusively the atrium, ventricle, or both
respectively. The current pacemaker model implemented is a
DDD pacemaker, which allows for the sensing, pacing, and
responding of both chambers. To increase the robustness of
the pacemaker model, these modes should be implemented,
which will then further help to incorporate more pacemakers
into the testing platform.

ii. Increase coverage

Additional algorithms used in pacemakers to treat specific
heart arrhythmias, such as endless loop tachycardia, are
different for each pacemaker. However, the overall expected
outcome is the same. These additional algorithms should also
be incorporated into the pacemaker model.

B. Testing Algorithms

i. Quantification of test coverage

Though an exhaustive evaluation of a pacemaker can be done
with a series of different test cases, the process is time-
consuming, and even still, may leave out certain cases.
Quantification of overall coverage of series of tests can help to
determine if additional tests need to be performed to determine
if a pacemaker’s software is working within safe conditions,
or if a selective series of tests instead of all can be performed
for maximum coverage. The algorithms needed to quantify the
coverage of test cases should be implemented in later
iterations of the pacemaker-testing platform.

ii. Symbolic to Concrete Trace

UPPAAL is capable of simulating the changes of a timed-
automata model in an event-based format. This symbolic
representation of the changes in the model can be converted
into a concrete format, where the exact times of the changes
can be recorded. By implementing this technique with the
UPPAAL pacemaker model, test cases can be quickly and
easily generated. Since the simulation can last as long as
needed, tests can also be varied in overall time, which can
further help to do more extensive testing for longer periods of
time.

iii. Initialization sequence

In order to set a pacemaker into a known state for testing, an
initialization sequence is run which simulates a regular heart
rhythm. Increase the robustness of the initialization sequence,
algorithms can be constructed to test if the pacemaker being
tested is in a proper state after given an initialization sequence.
The initialization sequence can then be adjusted to different
pacemakers if needed.

(b)

(a)

Fig. 19. The full tester platform. (a) The pacemaker model
implemented onto a board. (b) The tester board that interfaces with

MATLAB.

11

IX. APPLICATIONS

A. Pacemaker Development and Testing
The pacemaker-testing platform can be used by medical
device companies to help develop and test new pacemaker
software. Since the platform is standardized, companies can
perform the same tests to determine if the software they have
developed is operating within safe conditions. Since the
testing platform automates the testing process, using the
platform can also aid in rapid development, and faster
feedback of results.

B. FDA Test Approval
The pacemaker-testing platform can be used by the FDA as a
standard assessment to test, validate, and verify pacemakers
before they get released on the market. Currently, the FDA
certifies implantable cardiac devices based on extensive test
reports provided by the manufacturers. By using the
pacemaker-testing platform, the FDA can have a formal
method to approve pacemakers, which can also help in
providing companies faster approval or disapproval.

ACKNOWLEDGMENT
The authors would like to thank all members of mLab for

their support and collaboration on the project. The authors
would also like to thank Abhijeet Mulay for his work on the
hardware aspects of the project.

The authors would also like to acknowledge the support of
the National Science Foundation, through NSF REU grant no.
1062672.

REFERENCES
[1] “List of Device Recalls, U.S. Food and Drug Admin. (last

visited Jul. 19, 2012).”
[2] K. Sandler, L. Ohrstrom, L. Moy, and R. McVay, “Killed

by Code: Software Transparency in Implantable Medical
Devices,” Software Freedom Law Center, 2010.

[3] J. M. Cortner, “Testing Implantable Medical Devices,”
Global Healthcare Medical Device Manufacturing
Technology, pp. 2–4, 2003.

[4] E. M. Clarke and J. M. Wing, “Formal Methods: State of
the Art and Future Directions,” ACM Computing Surveys,
vol. 28, pp. 626–643, 1996.

[5] D. Arney, R. Jetley, P. Jones, I. Lee, and O. Sokolsky,
“Formal Methods Based Development of a PCA Infusion
Pump Reference Model: Generic Infusion Pump (GIP)
Project,” in High Confidence Medical Devices, Software,
and Systems and Medical Device Plug-and-Play
Interoperability, 2007. HCMDSSMDPnP. Joint Workshop
on, 2007, pp. 23 –33.

[6] R. Alur, D. Arney, E. L. Gunter, I. Lee, J. Lee, W. Nam,
F. Pearce, S. Van Albert, and J. Zhou, “Formal
Specifications and Analysis of the Computer-Assisted
Resuscitation Algorithm (CARA) Infusion Pump Control
System,” International Journal on Software Tools for
Technology Transfer (STTT), vol. 5, pp. 308–319, 2004.

[7] A. ten Teije, M. Marcos, M. Balser, J. van Croonenborg,
C. Duelli, F. van Harmelen, P. Lucas, S. Miksch, W. Reif,
K. Rosenbrand, and A. Seyfang, “Improving medical

protocols by formal methods,” Artificial Intelligence in
Medicine, vol. 36, no. 3, pp. 193 – 209, 2006.

[8] Z. Jiang, M. Pajic, and R. Mangharam. “Cyber-Physical
Modeling of Implantable Cardiac Medical Devices,”
Proceedings of the IEEE, pp.122-137, 2012.

[9] S. Barold, R. Stroobandt, and A. Sinnaeve. Cardiac
Pacemakers Step by Step. Blackwell Future, 2004.

[10] Z. Jiang, M. Pajic, A. Connolly, S. Dixit, and R.
Mangharam,“Real-Time Heart Model for Implantable
Cardiac Device Validation and Verification,” in 22nd
Euromicro Conference on Real-Time Systems (ECRTS),
July 2010, pp. 239 –248.

[11] R. Alur and D. L. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126:183–235, 1994.

[12] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and
R.Mangharam, “Closed-loop Verification of Medical
Devices with Model Abstraction and Refinement
(submitted),” International Journal on Software Tools for
Technology Transfer, 2013.

[13] DDD Pacemaker tests from Medtronic.

