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ABSTRACT 
 

Terrestrial robots used in reconnaissance or disaster-relief encounter obstacles throughout 
their missions, which necessitates the use of robotic arms to manipulate the objects that 
obstruct them. Over the course of ten weeks, the author participated in a research project 
which had the development of a control program for such an arm as its goal. This paper 
describes a set of programs that were designed to aid the user in removing obstacles from 
the path of an Unmanned Ground Vehicle (UGV) autonomously. 
The programs use LIDAR data to plot a robot’s surroundings, and then identify the 
nearest object that the arm can move. The coordinates of that object are then sent to an 
inverse kinematics program, which determines the best path for the robotic arm, with no 
additional assistance from the user. 
This paper details the techniques used to characterize and implement these programs, 
along with the mathematics used in the inverse kinematics needed for controlling said 
arms. 
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1. INTRODUCTION 
 
The use of robots in disaster relief and reconnaissance is becoming widespread. As more 
of these devices are used in the field, practical concerns begin to emerge. The 
environments that the robots are sent in to observe will inevitably provide obstacles that 
need to be negotiated or removed. One way to solve this problem is to use agile flying 
robots, but the operating range of such devices is limited by the weight of their batteries. 
Creating ground devices that are capable of clearing obstructions is another (perhaps 
more elegant) solution, given that such devices are capable of carrying more power 
sources.  

Another practical concern is how much the user has to control the robot. The process of 
collecting information remotely should be made as simple and as efficient as possible. 
This can be achieved by having all or most of the functions of the robot performed 
autonomously, including clearing obstacles. This is done by using Light Detection and 
Ranging (LIDAR) to create a map of the robot’s surroundings, and creating programs that 
use this map to assist in making decisions in obstacle clearing. The robot will make its 
own decisions as to how the arm will orient itself given the circumstances. This involves 
creating a number of inverse kinematics algorithms for the arm, which has four degress 
of freedom (DOF).  

Plotting the robots’ surroundings in three dimensions is on the cutting edge of robotics 
and research, and full three-dimensional imaging cannot be achieved in the small 
ammount of time allotted for this project (ten weeks). Therefore, we decided to have the 
LIDAR scanner look for obstructions in a plane parallel to the ground (Refered to as the 
XY Plane in this paper). Our test obstructions or “targets” were tall cylinders, whose 
position in the XY plane would be the same at both the LIDAR sensor’s height and in the 
arm’s range.  

Our goal is simply to have the arm go to the nearest obstruction and move it aside. The 
computer attached to the robot arm runs the inverse kinematics programs needed to make 
decisions as to how the arm will position itself towards the target. 

Comment [MW1]:  Better without this comma. 

Comment [MW2]:  Again, clarify the time 
frame. 
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2.  BACKGROUND 

 
2.1  ROBOTIC ARMS 

Mechanical arms have been central to industry since 1961 [1]. From their inception, they 
were used for repetitive tasks, often in hazardous environments. Since those early days, 
advancements have been made in computing and miniaturization that allow the creation 
of devices capable of responding to their own environments, rather than repeat the same 
task regardless of the environmental conditions. 

2.2  LIDAR 

There are many ways for the robot to perceive depth and distance, including using 
cameras in a stereo-vision configuration [2]. Unfortunately, this system only works with 
visible light, and in extreme environments this may not always be available. We thought 
it best to use LIDAR, a system that works by sending out a laser-light pulse and measures 
the amount of time it takes to bounce back [3]. This works well in low-light settings. 

2.3  OUR PLATFORM: MAGIC 2010 

We are fortunate to already have a robot in our 
possession capable of mapping its surroundings using 
LIDAR (Fig.1). It is a compact Unmanned Ground 
Vehicle (UGV) developed as part of the American and 
Australian defense departments’ MAGIC 2010 
challenge [4]. It uses two Hokuyo LIDAR detectors. 
One of them is kept fixed on the robot, and is used for 
horizontal 2-D mapping. Another is mounted vertically 
on the front of the robot and pans side to side. This 
latter LIDAR detector is used for detecting the 
characteristics of the terrain in the robot’s path. 
Simultaneous localization and mapping (SLAM) 
algorithms generate a map for the robot using data from 
the two LIDAR detectors. The robot uses this data to 
help plan the best route. 

The UGVs were designed to work in a team with 
several others like them, but are capable of mapping their surroundings on their own [5]. 
For our tests, we mounted the arm on one such UGV, and used its horizontal scanning 
LIDAR to detect objects.  

  

 

 

Fig.1 MAGIC 2010 UGV [5]
  

Comment [MW3]:  Second sentence:  ‘From 
their inception’ cries out for ‘have been used.’  
Compare the next sentence for verb time.  However, 
that next sentence implies that you were around in 
1961.  Puh-leeze! 

Comment [MW4]:  So if you’re happy saying 
‘we’ here, why not in the Abstract?  Why ‘the 
author’? 

Comment [MW5]:  still the proposal… 
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3. METHODS 

 

3.1 THE ROBOTIC ARM AND ITS DESIGN 
 

Rather than design a robotic arm from scratch, an existing design from CrustCrawler Inc. 
was used (Fig.3, left). It uses seven servos, specifically Dynamixel AX-18A servos made 
by Robotis. AX-18A servo motors each have a microcontroller that accepts serial data 
from a central computer or controller. This allows parameters like speed, torque and 
position to be fed directly to the servos and stored and modified in the memory of the 
servos’ microcontrollers. The “position” parameter of the servos controls the joint angle, 
which is what is being controlled in our inverse kinematics equations. Each servo has an 
ID, which is used for sending that servo specific commands from the computer. 
Individual commands can be sent to several servos simultaneously. In order to ensure that 
the instructions were sent properly, a status packet is sent back to the computer/main 
controller. This status packet can include data being read from the servos, such as its 
current position or torque (Fig.2). [6] 
 
 
 
 
 
 
 
 
 
 
 
 
In our arm, the first servo operates a turntable at the base of the arm that rotates the arm. 
The second and third servos are located a few centimeters above the base at an angle, and 
their rotors face away from each other. Together they simulate an elbow. A few 
centimeters above that elbow is a similar joint, also controlled by a pair of servos. That 
joint orients the sixth servo, which is the wrist of the gripper. The wrist orients the 
gripper so that the flat paddles that grip the target are parallel to the target’s surface. For 
our experiments, the targets were upright cylinders so the wrist was kept in a fixed 
position. The final servo opens and closes the gripper that is to grasp the targets. 
In order to determine whether the target has been gripped properly, a program that reads 
the torque felt by the gripper servo commands the gripper to cease tightening its grip 
once the torque reaches a certain value, which is to be assigned experimentally. 

Fig. 2 Visualization of Information Sent to Group of Dynamixel Servos [6] 

Comment [MW6]:  just ‘commands’ 
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3.2 ARM KINEMATICS 
 
Despite the number of joints, the geometry of this arm can be simplified to as few as 
three vectors (Fig. 3, center). A goes from the center of the turntable to the center of the 
first elbow, B goes between the center of that elbow to the center of the elbow above it, C 
goes between that elbow and the center of the gripper. All of these vectors have fixed 
lengths except for C, which varies depending on how open or closed the jaws of the 
gripper are, but its length will be known by the time inverse kinematics equations are to 
be evoked. More details on the gripper’s kinematics are given later in this paper. 
These vectors’ orientations in space are defined by the angles α, θ, φ, and ψ (Fig.4). α is 
fixed, due to the construction of the arm. θ is defined by the “position” of Servo 1, φ by 
the bottom elbow (Servos 2 and 3), and ψ by the top elbow (Servos 4 and 5). 
The goal of the inverse kinematics program is to orient the center of the arm’s gripper to 
a target point, P. The vector sums of A, B, and C ought to add up to P’s position vector P. 

Fig.3 CrustCrawler Robotic Arm and its Three and Four Vector Representations in Three Dimensional 
Space Photograph and diagrams made by author 

Fig.4 Three Vector Representation of Arm with PA Inserted as an Aid to Calculation 
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The trigonometry involved in calculated the angles θ, φ, and ψ works as follows: 
 
Given: The lengths of A, B, C and P, angle α, and P’s coordinates 
 
θ can be determined with only the x and y coordinates of point P, using the Pythagorean 
theorem and trigonometric identities (Fig.5, a). ψ necessitates the creation of a vector PA 
(Fig.5, b), so that we may use the law of cosines to find it (Fig.5, c). PA splits φ into β and 
γ (Fig.5, d) .  β can be found with the law of sines (Fig.5, e). γ can be determined using 
the definition of a vector dot product (Fig.5, f) .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Representing the arm with three vectors is adequate when one is working with a full three 
dimensional representation of the robot’s surroundings, but our system is only plotting in 
two dimensions, and we need the grasper to always be parallel to the ground in order to 
grasp our tall target (it wouldn’t do for the grasper to come to the target at an angle, 
because it would knock over the target. This was learnt by experiment). Therefore, we 
needed to add an additional constraint, which led to our four vector model (Fig.3, right 
and Fig.7). The vector C in the three vector model was replaced with CNEW and D. D is 
always perpendicular to CNEW, and they form a right triangle with the old C as their 
hypotenuse. D varies in length, and depends on the grasper’s position; how open or 
closed the “jaws” are. The movement of the centers of the grasper’s fingers can be 
modeled with a circular path (Fig.6).  D’s changing length is directly related to the width 
of the target object, which is determined from LIDAR data.  
 
 
 
 
 
 
 
 

   θ = cos - 1                                                              PA = P - A                         ψ = cos -1      - |PA|2 + |B|2 + |C|2                            
                                          2|B||C| 

 
 
             (a)                                                 (b)                                                       (c) 
 
 
            φ=β+γ                       β = sin-1      |C| sin ψ                         γ = cos -1      PA  •  -A 
                                               |P|                                                  |PA| |A| 
 
             (d)                                                (e)                                                        (f) 
 
 

Fig. 5 Formulas Used In Defining the Three Vector Inverse Kinematics Model for the Arm 

Comment [MW7]:  (the) 

Comment [MW8]:  I’d say ‘it’. 
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Fig.7 Four Vector Representation of Arm 
 

Fig. 6  Grasper Geometry.  
The red circles represent the center of the grasper’s fingers. D’s total length is the sum of D and DΔ 

CNEW 
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Since only the XY plane is needed, the angles for the four vector model can be calculated 
as follows: 
 
Given: The lengths of A, B, C,CNEW, D, angle α, and P’s coordinates 
 
θ ( in Fig.7), is defined the same way in the four vector model as in the three vector 
model, and orients the entire arm.  
We can define A’s shadow on the XY plane as |A| cos α. Angle δ and C’s shadow on that 
plane can be found through trigonometry, since we are given C,CNEW, and D. Armed 
with these quantities, we can create a “Budget” that can be used to find the other angles 
(Fig.8, a). For ease of calculation, φ is split into angles γ and β (Fig.8, b). β can be defined 
with the definition of a cosine (Fig.8,c).  γ and ε can be found with the properties of 
triangles (Fig.8, d and e respectively). Once we have ε we can find ψ (Fig.8, f). 

Budget = |PXY| - |A| cos α - |C| cos (π/2 –δ)                            φ=γ+β                      β = cos-1(Budget / |B|)                     
 
                         (a)                                                            (b)                                           (c) 
  
 
                         γ=π-α                               ε=π-β                                    ψ = ε + π/2 
 
                           (d)                                    (e)                                              (f)                                               
 

Fig. 8 Formulas Used In Defining the Four Vector Inverse Kinematics Model for the Arm 

Fig. 8 Inverse Kinematics for Four Vector Model of Arm 
 

Comment [MW9]:  use a hyphen to help the 
reader, here and elsewhere. 
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3.3 LIDAR 

 

Our means of detecting objects is the Hokuyo UTM-30LX LIDAR sensor. It was chosen 
for its wide scanning range and its millimeter accuracy. The scanner returns a “distance 
array” containing the distances of the LIDAR sensor’s surroundings at each of the angles 
in its range (a measurement every 0.25o), 40 times a second [7]. This constantly 
refreshing array can be used to plot the surroundings of the robot.  

For our work, only the 180 o arc in front of the robot is considered, and distances that are 
not in not in the arm’s reach are ignored. The distance array is then filtered for noise 
using a moving average filter. 

Each index in the distance array represents an angle (ϴ), and its contents represent the 
distance (r) between the scanner and the nearest object at that angle. Returning the 
minimum point in this matrix gives us the angle (and therefore the position) of the nearest 
object. Converting this polar coordinate (r, ϴ) into the necessary Cartesian coordinates is 
simple (Fig. 9). 

It is not enough to merely give the arm the closest point. We have to find the size of the 
object to be grasped to see if it is even possible for the arm’s grasper to grip it, and 
determine the center of the object for the kinematics program. 

Determining the width of the object is a matter of looking at the nearest point in the 
distance array, and its immediate neighbors; the differences between distances amongst 
these neighboring points are examined. Once the difference between one element in the 
distance array and its immediate neighbors is beyond a certain limit, we know that that 
point is an extreme or edge of the object being detected. The center of the object is the 

Fig.9 Representation of 2-D Plotting Using Hokuyo 
LIDAR Scanner. r and ϴ depend on the constantly 

changing array of values being returned by the 
scanner. 

Fig.10 2-D Plot Made with LIDAR  Scanner.  
Target is identified and highlighted in red 

Comment [MW10]: Okay;  but I’d say, ‘we 
detect objects using the….sensor.’ 

Comment [MW11]:  clunky.  180 deg. needs a 
plural, at least.  ‘The 180 degrees in front of the 
robot are considered;’ ‘Only an arc of 180 deg. is 
considered.’ 
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midpoint of the line between the two extremes. Vector projection is then used to 
determine the width of the object. 

Fig.10 shows a plot made with the filtered LIDAR data, with a target in range. The 
program recognized the object and highlighted it in red. 

3.4 WORKING ENVIRONMENT 

Once again, our targets are cylinders whose height, as far as the robot is concerned, is 
infinite. The LIDAR detector is not directly above the arm, so an offset vector needs to be 
in place in order for the arm to go to the right point on the XY plane. The value of this 
vector and the vectors that defined the arm had to be adjusted every now and again, since 
our measurements were far from perfect. 
 
We positioned the target in front of the robot, and then told the arm to look for it. Once it 
found it and grasped it, we instructed it to set it aside. We tried approaching the target 
from different angles with varying degrees of success.  
 
Friction isn’t taken into account in our program, and in our early tests, the target had to 
be suspended above the ground in order for the arm to successfully grasp it. Fig. 11 
shows one of our later tests. The target is in front of the robot, and supported on a 
makeshift platform. The arm, when it moves the target to another location will simply 
drop it to another platform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Testing the Arm 
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3.5 FINITE STATE MACHINE 
 
Now that we have defined the inverse kinematics programs for the arm and have gathered 
data on the surroundings of the robot via LIDAR, we can implement the process of 
autonomously grasping targets. This requires the process of detecting and grabbing 
objects to be broken down into several stages (six in our case) and implemented in a 
finite state machine (Fig.12). The conditions needed to get from one stage to the next (or 
to backtrack to the previous stage) also need to be defined.  
 
Let us go through an iteration of this state machine: The arm remains in a neutral 
position until prompted by the grab signal, which is a set of coordinates within the arm’s 
reach for it to go towards. Given the signal it heads towards the object, and follows the 
object if it is moving, so long as it is in range. Once the arm has satisfactorily centered 
the grasper around the object it grips it. The arm lifts the object once it has finished 
gripping, and moves the object aside to a placement position (when prompted by the 
user in our experiments). Then, the arm ungrips the object, dropping it in the new 
position. Afterwards, the arm returns to its neutral position, ready for the next grab 
signal. All the while, if something goes astray, the state machine will remain in its current 
state until the issue is resolved or revert to a previous state. 

Fig. 12 State Machine for Arm 

Comment [MW12]:  Does this involve locating 
it in space, and then setting it down?  Simply 
shoving it?  Dropping it from a height? 
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4. DISCUSSION AND CONCLUSIONS 
 

The LIDAR scanner is able to plot surroundings and give us a good point for the arm to 
head towards. The arm is able to go towards an object and follow the object if it moves. It 
even grasps the target and sets it aside, assuming ideal conditions.  
 
The principle of using LIDAR to detect objects and designing programs to give useful 
instructions to a robotic arm to interact with these objects has been successfully proven. 
However, the inverse kinematics are still in the process of being refined and a better 
means of calibrating the arm (and the vectors it is represented by in the programs) needs 
to be found.    
    
Hopefully, future students in this project will plot surroundings in true 3D, and not have 
to rely on all obstacles being of regular width and shape. Also, using this arm in 
conjunction with the SLAM programs on the MAGIC 2010 platform would go very far in 
proving the principle of using an autonomous robotic arm in emergency work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13Arm attached to the MAGIC 2010 UGV 
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4. RECCOMENDATIONS  
 
When working on robotic arms with a two dimensional model of the robot’s 
surroundings, a four vector model for the arm proved to be absolutely necessary. The 
grasper had to be parallel to the ground (XY plane) because if it approached the target (a 
tall cylinder) at an angle, it would tilt the target away from the robot. Since the LIDAR 
scanner is positioned above the arm, the target appeared to be moving further away from 
the arm than it actually was, and it told the arm to go even further towards the target. This 
ultimately tipped the cylindrical target over. This is why we decided to add the fourth 
vector to constrain the grasper. Also the geometry of the grasper changed when it began 
to grip the target, so one must be aware of such changes in the arm’s geometry when 
calculating the kinematics of the arm. 
 
Also, working in two dimensions is not as effective as three and demands absolute 
accuracy on the part of the inverse kinematics program. The gripper must be centered 
exactly on the target. If one finger of the gripper touches against the target first it will 
nudge the target, causing the target to move away. This can make the arm go into a 
positive feedback loop where every time the grasper accidentally rubs against the target 
the arm will advance further. Working in three dimensions should mitigate this problem. 
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Comment [MW13]:  just contribute to, not into.  
And just glimpse the world, don’t glimpse ‘into.’ 
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7. APPENDIX – USING MATLAB TO CONTROL DYNAMIXEL SERVOS 
 

Below is a good source of open source MATLAB code that can be used to control 
Dynamixel motors:  
 
http://agaverobotics.com/products/servos/robotis/ax12/ax12-open-source-code.aspx  
  
I would like to call the reader’s attention to SerialLed which allows the user to directly 
manipulate the packet of information sent to Dynamixel servos. The data sheets of 
Dynamixel motors are the best source for learning the language used by their 
microcontrollers. A USB2Dynamixel converter is needed in order to interface a 
Dynamixel servo to your computer and is available from ROBOTIS.  
 
Below is an example of a code based on SerialLed which is designed to let the user 
change the ID of a servo so that is can properly respond to commands. The 
manufacturer’s default ID is 1, unless the servo is marked otherwise. 
 
setCheckSum is a piece of code written by my colleague James Yang which simplifies 
the process of making a CHECKSUM which is the Dynamixel’s way of preventing 
error’s in message transmission. 
 
function Change_ID() 
  
% Oftentimes you will have to change ‘COM4’ to some other 
serial port that is available on your computer. The default 
‘BaudRate’ for a Dynamixel is 1 megabit/second but can be 
changed. 
  
    % Set the port paramenter 
    s=serial('COM4', 'BaudRate', 1000000, 'Parity', 'none', 
'DataBits', 8, 'StopBits', 1); 
     
    % open the port 
    fopen(s); 
     
    % display the com port resources 
    com = instrfind; 
    disp(com);      
     
    id = input(What is the original ID of the servo you   
wish to change?: ', 's'); 
    ID=str2num(id); 
    newid = input('What do you want to change the ID to?: 
', 's'); 
    NEWID=str2num(newid); 
    % CODE CONTINUES ON NEXT PAGE 
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    %---{Data packet, instructing servo to change its ID }-   
%[FF, FF, "Original ID", “Length of packet (including 
CHECKSUM)”,   “Writing”, “Position in memory of parameter 
to be changed (in this case, 3)”, "New ID" ]  
 
    a = [255, 255, ID, 4, 3, 3, NEWID]; 
    %--------------------------------------------------- 
    % Set check sum to prevent errors,  
    a=setCheckSum(a); 
         
    % display the values in a 
    disp(a); 
     
    % binary write 
    fwrite(s, a); 
     
    % Expecting a 6 byte status packet 
    out=fread(s, 6); 
     
    % Display status packet 
    disp(out); 
     
%Run Test which turns on pilot LED of servo to ensure if ID 
was set properly.  
    b = [255, 255, NEWID, 4, 3, 25, 01]; 
    %--------------------------------------------------- 
    b=setCheckSum(b); 
         
    % display the values in a 
    disp(b) 
     
    % binary write 
    fwrite(s, b); 
    % Expecting a 6 byte status packet 
    out=fread(s, 6); 
     
    % Clean up 
    fclose(s); 
    delete(s); 
    clear s; 
end 
 
 


