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ABSTRACT: 

 Self-sufficiency in robotics motivates the need for continual improvement in autonomous 
navigation for mobile robots. Wall-following provides a simplification of 2-D navigation 
problems by providing a reference by which these problems are reduced to 1-D. A laser scanner 
for wall detection (abstracted as an active tangent/curvature sensor) is used on a kinematic 
unicycle robot, together with a controller inspired by [1] with an explicit representation of the 
wall as a planar curve. Reported experiments (performed using the X-RHex [2] robot) include 
straight wall trials to demonstrate the efficacy of the controller for a variety of initial conditions, 
as well as longer trials in more complicated environments including concave and convex corners 
up to and exceeding 90º.  
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INTRODUCTION: 

In a world of increasingly advanced machines gaining uses in our everyday lives, we see 
a continuing trend driving these machines away from direct human control. Robots are 
continuing to take over many monotonous jobs which require little human intuition with a 
greater degree of autonomy. However, this trend is pushing past the easy applications like 
labeling a bottle in a bottling plant or applying a spot weld in a vehicle production line.  As a 
result, there is an increasing need for an autonomy in robotics of greater intelligence and 
versatility. For example, the searching of a burning building, one suspected of explosive rigging, 
or another indoor application could be given to a robot with corresponding capabilities.  
Additionally, it is useful for a robot to retain the ability to perform these tasks with little or no 
human intervention or control. Therein we discover an application of autonomy which requires a 
robot to self-navigate indoor environments. 

It has therefore been deemed appropriate for the RHex platform robots [2]  to obtain 
algorithms giving them the ability to autonomously negotiate an environment by tracking a 
vertical surface (a navigation capability hereafter referred to as wall-following). RHex robots are 
hexapedal robots designed to act as platforms for sensors or other laboratory equipment to be 
mounted on their backs for use in extremely diverse environments and terrains. While they are 
intrinsically capable locomotion platforms, additional sensory capabilities are needed to solve the 
problems of navigation, localization, and mapping which are required to make it operable 
without constant human intervention. The wall-following capability aids navigation by 
essentially reducing a two-dimensional navigation problem to a one-dimensional problem by 
adding a motion constraint such that the robot must maintain a desired stand-off distance from a 
wall in an indoor environment.  

The project seeks to achieve the fastest possible robust wall following behavior in typical 
indoor environments with corners and large obstacles. We seek a method which does not rely on 
tactile sensing with strict offset limitations. Rather, the detection of the wall will be done by a 
planar laser scanner which has a viewing radius of less than four meters. Hence, the robot has a 
larger “look-ahead” distance on the surface of the wall when it is closer to the wall.  

 

 
Figure 1: X-Rhex with a laser scanner payload. 



Tasks relating to robot interfacing and control are already completed and are regarded as 
previous work done. This includes GaitRunner, a predefined Buehler clock which coordinates the 
legs’ movement for robot locomotion, established on the software packages with RHex robots. 
Gait parameters [3] are left at their default values optimized for power efficiency in robot speeds 
around one half body length per second.  

 

IMPLEMENTATION: 

The world model assumes that there is always a wall somewhere within the view of the 
laser scanner, and makes no reservations for the absence thereof.  

 
Figure 2: The world model is described by a Cartesian coordinate system with the wall located on the x-axis. The 
robot’s offset distance x should approach some target offset distance T. 

A wall is defined as a planar curve. Allowances are made for extreme variations in this definition 
corresponding to the huge variation in testable (structured) real-world environments including 
gaps, corners, and obstacles. We model our robot as a simple kinematic unicycle with state:  

ࢗ ൌ ቈ
ݔ
ݕ
Ɵ
቉          (1) 

where ሺݔ,  ሻ is the Cartesian location of the robot’s center within the world model and Ɵ is theݕ
robot’s yaw angle as measured from the wall, or the world model’s X-axis.  

There are two main abstractions in the wall following algorithm: the Sensor and the 
Controller. The sensor refers to all methods required to pull data from the robot's environment, 
interpret a wall model, and develop a state estimate q of the robot’s position relative to the wall. 
The controller dictates the movement of the robot based on the given wall model and an the 
robot's forward speed.  

 



CONTROLLER:  

The Controller abstraction assumes that a wall state estimate is always available, even if the 
sensor must fudge the data to fit the world model. Given the wall offset ࢗ૛ and angle ࢗ૜, the 
controller gives the desired turn value ߱ (desired rate of change of the wall angle) as: 

 

߱ ൌ ሺെ݇ሺ݊݅ݏሺࢗଷሻ െ ሺࢗ૛ െ ሻࢀ ൅  (2)             ࢜ሻࢪ

 

where ࢜ is the robot’s forward speed, ݇ is a tunable control parameter and ࢪ is the 
curvature estimate. The default value for ݇ is set to 3. This is an intuitive decision based on a 
number of experimental observations (see the Experimental section). Additionally, this report is 
intended to state the functionality of the controller, but does not attempt to provide analytical 
proof of its stability. A publication is currently in progress which will provide a proof of global 
Lyapunov stability given several conditions including bounded curvature. 

 

SENSOR: 

The sensor abstraction includes one physical component, a Hokuyo Scanning Laser 
Range Finder [4] also referred to as LIDAR (Light Detection And Ranging) mounted to the back 
of the robot. The laser scanner returns an array spanning 240º every 28 ms with a distance 
detection error of approximately 1%. All other components of the sensor are virtual 
implementations. 

This project avoided the implementation of a very specific 'wall model' since time 
limitations on the project preclude us from creating a model accurate enough to describe the 
wide variety of wall situations we will attempt to navigate. We postulate that by limiting the 
sensor’s view to a specific area, we increase the likelihood that only one wall lies within that 
view. A tunable linear model coupled with the ‘limited-view assumption’ yields an acceptable 
model versatile enough for the purposes of the wall-following project. This assumption does not 
account well for extreme changes in the wall (sharp corners), so additional control parameters 
 .were implemented to account for this (see Wall Loss) (ࢪ)

We define a view path as the robot’s isle of focus given by angle and width. The laser 
scanner data from all other paths is removed. The view path is given by a view angle from the 
robot's x-axis in degrees, and a path width given in meters. The data is initially filtered to remove 
data points smaller than .01 meters which are assumed to be errors within the laser scanner itself. 
By our previous 'wall' definition, all data points outside the specified view path are rejected by a 
set of comparators and then converted into the robot's Cartesian coordinate system. 



 

Figure 3: View path defined by angle and width 

RANSAC: 

RANSAC (Random Sample Consensus) is used to discover a 'wall' within the point cloud 
returned by the laser scanner. RANSAC uses an iterative method in an attempt to chance upon a 
subset of points with good characteristics for a wall: 

 

1. Two seed points are picked at random and a line is fit to connect the two seed points 
using the least squares solution. Assuming a is an n x 2 (n is the number of data points, 
two in this case) matrix where each row represents an x-y data point in the robot's frame 
and b is an n x 1 matrix of ones, the least squares method solves the equation by finding a 
2 x 1 vector x that minimizes the squared Euclidian norm.  

2. All points within an orthogonal distance to the seed line are labeled as potential inliers. A 
linear least squares best fit line is fit to the potential inliers in the same manner as 
described above (except that n is the number of potential inliers) and a residual error is 
calculated according to:   where N is the number of potential inliers.  

3. If the set of potential inliers is greater than 15% of the total number of data points 
returned by the laser scanner, then the potential inliers' fit line and its residual error are 
saved as a potential wall fit. 

There are two possible paths of termination of the RANSAC iteration loop. First, if the 
model's residual error is below .01, the set of points is very straight, and thus likely represents a 
wall. The second case for RANSAC termination occurs when the total number of iterations 
reaches 50. Experience has shown 50 to be a reasonable termination point, above which a better 
wall fit will not be found. This is partially due to the continuous case, described below. In either 
path, RANSAC will return the set of determined 'inliers', the estimated wall fit, and the residual 
error. 



 
Figure 4: Unrestricted data cloud returned by the laser scanner. Points in red represent the RANSAC wall fit. 

A wall model must be found and passed to the controller with every set of data points 
returned by the laser scanner. A full RANSAC analysis of each scan is deemed too costly in 
computer resources and is used only for a base case to find the initial wall. A continuous, 
noniterative case is convenient for every consecutive set following the initial base case. Such a 
case is realized by the same method as RANSAC, except for a few minor changes. Assuming the 
base case RANCAC performed as expected, there is a good wall fit within the view path. As a 
result, even if the robot is moving at high speed, the latency is so small between sequential laser 
scanner data sets that the 'wall' will have changed very little in the time between sequential scans. 
The previous wall fit is used to seed the new data set and designate the inliers for the least 
squares fit. Steps two and three from the iterative base case are then performed to find the new 
wall fit.  

Should the size of the inlier sets ever drop below a ‘fit threshold’ usually fixed at 20 
points, the algorithm terminates. This set point was determined by intuition, considering that 
slight variations in the laser scanners readings for very small inlier sets can cause drastic 
fluctuations in the wall fit. Experimentally, this error only ever occurred when the robot 
approached a situation where the laser scanner could not see around a corner. Even a limited 
view of the wall consistently provided an inlier fit numbering well above 20 points. 

The wall fit is then translated into the robot's frame of reference giving ࢗ૛ and ࢗ૜, the 
wall offset and angle respectively. The robot’s state variables are then filtered by a Kalman Filter 
to smooth out the noise.  

 
WALL DISAPPEARANCE: 

The continuous case ‘seeded’ RANSAC does not produce a wall model providing accurate 
state estimates for the desired variety of situations. Simply averaging the points within a static, 
predefined view of the wall lacks the versatility to operate in greatly varied environments. 
Imagine the robot driving parallel to a wall, approaching a sharp corner. The view path is set at -



60º and a width of 1.5 meters. No requisites have been set to account for the disappearance of a 
wall behind a corner, other than to terminate the run when the set of inliers drops below the 
‘inlier threshold’. 

One method to increase the versatility of the wall model is to modify the method by which 
the limited view is set. A publication is currently in progress which will propose algorithms and 
proofs for an active sensing model, where a second controller determines the robot’s view path. 
In cases of wall loss, the robot would automatically look in places where it knows a wall to exist 
until it is in a position to sense the next wall (around a corner). It is useful for the robot to 
account for a loss-of-wall situation by positioning itself such that it can easily sense the next 
wall. In order to do this, the robot must have an additional sensor component which activates 
when the wall is disappearing.  

 

Wall Loss Compensation: 

A ‘wall-loss’ detection algorithm is implemented to serve the case described above. The 
purpose of the algorithm is to prevent failure of the wall-following behavior in cases where 
obstacles or corners inhibit the laser scanner’s sight. Our world model asserts that it is impossible 
for a wall to simply disappear. A wall must always go somewhere, even if it turns upon itself in a 
full 180º. We then choose to assume that the ‘unseen’ wall is just outside of the view of the laser 
scanner and invent a cluster of data points to realize the assumption. Points are added along the 
line given by the robot’s position and the last point in the set of inliers such that the points are 
added at the limit of the robot’s view. The number of points added is proportional to the distance 
between the last point in the set of inliers and the edge of the view path. The new cluster is used 
to introduce a second controller parameter which represents the added points. 
 

Curvature: 

We introduce a new control parameter to provide an estimate of the wall’s curvature. Note 
that we choose not to focus on accurate modeling of the wall. Rather, we focus on the resulting 
behavior. It is therefore unnecessary to obtain a high degree of accuracy for curvature. We seek a 
number somewhat proportional to the actual curvature and assume that parameter tuning within 
the controller will account for the discrepancy. Additionally, curvature for a corner is infinite, a 
number which is not useful for the stated purpose. Curvature ࢪ is then calculated by the 
following: 

ࢪ ൌ ଶ

ே
∑ ൬

௉೑,ೌ,೤ି௉೎,ೌ,೤
௉೑,ೌ,ೣି௉೎,ೌ,ೣ

െ
௉೎,ೌ,೤ି௉್,ೌ,೤
௉೎,ೌ,ೣି௉್,ೌ,ೣ

൰ே ଶ⁄
௔ୀ.ଷே               (3) 

where N is the length of the data cluster, Pc is the center point in the cluster, and Pb and Pf are 
points at opposite ends of the cluster, ‘a’ from the center point. 

 

 



ROBOT SPEED: 

It is nearly impossible to accurately determine the robot's forward speed in real time due 
to surface variance, leg compliance, and a host of other variables. The scope of this project 
prevents a thorough examination of the robot’s actual speed and this is left as future work. It is 
possible to easily develop a rough estimate of the robot’s forward speed using a visual ground 
truth mechanism. April-Tags [6] are used as this mechanism. A brief test was performed in an 
attempt to discover a proportional relationship between GaitRunner’s set-point speed and the 
robot’s world-speed: 

 

 

 

The time taken to commute between two points was recorded using April-Tags for set-point 
speed values ranging from .6 to 2.0 in increments of 0.2. The robot’s world speed is estimated 
by:  

ܸ ൌ ሺ௉ೞି௉೐ሻ

௧
       (4) 

where t is the run duration, and Ps and Pf are two world location points given by April-Tags. A 
simple linear fit was set to the data, giving a constant relationship of approximately .32. The 
parameter ࢜ in equation (2) is then given by:  

ݒ ൌ .32 ∗  (5)        ݀݁݁݌ݏݐ݁ݏ

Figure 5: Relationship between set‐point speed and actual speed on a smooth vynal tile floor using 
GaitRunner’s default parameters. 



Figure 5 displays an example of an early experimental setup with April-Tags. Later experiments 
were performed in engineered environments with a greater degree of precision.  

            
 

 

DISCUSSION:  
 

 A series of straight wall experiments were performed to demonstrate the functionality of 
the controller in a structured environment with April-Tags. The robot was placed at three 
different initial conditions: 

 

 
Figure 7: Three initial starting points for the straight-wall experiments. .05 meter offset at 80 degrees from the wall, 1.5 
meter offset at 20 degrees from the wall, and 1.5 meter offset at 110 degrees into the wall. 

 

Figure 6: Experimental Setup with April Tags



Figures 7 and 8 describe a configuration 1 test result set with k=3: 

 

           Figure 8: Config. 1 ground truth robot path               Figure 9: Config. 1 Robot controller parameters 

Figures 9 and 10 describe a configuration 2 test result set with k=3: 

 
          Figure 10: Config. 2 ground truth robot path                Figure 11: Config. 2 robot control parameters 

Figures 11 and 12 describe a configuration 2 test result set with k=3:  

          Figure 12: Config. 3 ground truth path                Figure 13: Config. 3. Robot controller parameters 



 

 

In all three configurations illustrated above, it is obvious that the controller has not been 
fully tuned as there is some drifting in the robot’s heading after it reaches the target. The robot 
appears to overshoot its target in each test. This problem can be easily illustrated by running the 
same test over a much longer distance using a non-stationary camera to follow the robot along a 
continuous path of April-Tags. Such a test was not attempted since the accuracy of April-Tags 
has not yet been determined when the camera is not stationary. However, the control parameters 
do appear to approach the zero value. It should also be noted that the curvature ࢪ is not relevant 
and was not used in the three experiments described above. 

Two 90 degree corner experiments were performed to illustrate both the need for and the 
effectiveness of the wall-loss and curvature algorithms. The first is a 90 degree corner attempt 
without the wall loss detection. Shown below is a sequence of laser scanner cloud images from 
the robot’s view of the 90 degree corner. Each dot represents a data point returned by the laser 
scanner. Red dots represent the RANSAC inlier set and the dotted line represents the wall fit line.  

 

 
Figure 14: Laser scanner view of corner experiment with wall loss detection disabled. Each image represents one snapshot 
of the robot’s view. Three snapshots are given at the beginning, middle, and end of the experiment.  



 

Shown below is a similar example, but with the wall loss detection enabled. Each X in the third, 
fourth, and fifth images represents a point added by the wall loss algorithm.  

 

 

 
Figure 15: Laser scanner view of corner experiment with wall loss detection enabled 

 

As depicted in the sequence above, when the wall loss algorithm detects a gap between the end of the line 
of points and the edge of the view path, it adds a cluster of points at the end of the existing cloud. The 
curvature of the new cluster is then calculated and passed to the controller. 



 
Figure 16: Control parameters for corner experiment. 

Figure 14 depicts the controller parameters of the wall following experiment as a function 
of time. Note the spike in the curvature value at approximately nine seconds. The modification 
provided by the curvature value placed the robot in a position to view the next wall which the 
robot would not have otherwise achieved.  

 An experiment was performed using a wall with a high degree of variance. The wall had 
several corners in both directions and a small gap as well. The robot’s view path was set to 45 
degrees with a width of 2.5 meters. The control parameter k was set to 3, the target offset was 1 
meter, and the GateRunner’s speed parameter was set to 1.5. Snapshots of the robots view are 
shown below: 

 



   
Figure 17: Laser Scanner view of random wall experiment sequence 

 

 
Figure 18: Control parameters for the extended test 

The wall disappearance was not severe enough in the experiment above to justify the use of the 
wall loss compensation algorithm. However, this experiment illustrates that the wall loss 
algorithm does not render the controller useless in environments which are less structured than 
straight walls, even with strong fluctuations in the curvature as shown in the figure above.  

 



CONCLUSIONS: 

The robot must view far enough ahead so as to be able to react to significant positive 
changes in the wall. However, the robot must also be able to react to similar negative changes in 
the wall. Testing of the current algorithm illustrated that without definitions for active sensing 
(i.e. actively choosing the view path in real time) the set width of the view path must be very 
large (greater than 1.5 meters) in order to react to significant changes in the wall. Imagine for a 
moment that the view has been set to 45 degrees from forward. With a narrow view, it is 
impossible for the wall-loss detection to position the robot such that it can find a wall around a 
corner while retaining the current wall in its narrow field of view without a significantly 
increased risk of collision. 

Successful indoor navigation in widely varied scenarios was obtained with the above 
algorithm. There are a great many possible improvements to be made which will greatly advance 
the algorithms behavior. Continuing work on the project will produce a robust wall following 
behavior which will operate without failure in a large range of environments. In addition, the 
behavior will be applied to augment existing autonomous behaviors such as stair climbing and 
landing exploration. 
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